Point-of-care sensors, which are low-cost and user-friendly, play a crucial role in precision medicine by providing quick results for individuals. Here, we transform the conventional glucometer into a 4-hydroxytamoxifen therapeutic biosensor in which 4-hydroxytamoxifen modulates the electrical signal generated by glucose oxidation. To encode the 4-hydroxytamoxifen signal within glucose oxidation, we introduce the ligand-binding domain of estrogen receptor-alpha into pyrroloquinoline quinone-dependent glucose dehydrogenase by constructing and screening a comprehensive protein insertion library.
View Article and Find Full Text PDFEngineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein.
View Article and Find Full Text PDFBrief Bioinform
November 2021
Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets - amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarize work incorporating: target identification, design of small molecules and biologics, and drug repurposing.
View Article and Find Full Text PDFTwo series, coumarin-linked to thiazolidinone via a pyrazole linker (6a-m, Series 1) and coumarin-linked 1,2,3-triazoles (5a-j, Series 2) were synthesized and the synthesized compounds were subjected for evaluation against the four physiologically and pharmacologically relevant hCA isoforms, hCA I, II, IX and XII. The results indicated selective inhibition of tumor-associated isoforms hCA IX and XII over the off-target isoforms, hCA I and II. The compounds of series 1 exhibited better hCA IX inhibition compared to hCA XII, with compounds 6i, 6h, 6a and 6k, exhibiting notable K values of less than 100 nM.
View Article and Find Full Text PDFAfter reacting with hydrogen peroxide (HO), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe=O) and induces irreversible oxidation of "hot-spot" amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the β cleft of Hb Providence; and the third had both of these β substitutions.
View Article and Find Full Text PDFTautomycetin (TTN) is a polyketide natural product featuring a terminal alkene. Functional characterization of the genes within the ttn gene cluster from Streptomyces griseochromogenes established the biosynthesis of the TTN polyketide backbone, its dialkylmaleic anhydride moiety, the coupling of the two moieties to form the nascent intermediate TTN F-1, and the tailoring steps converting TTN F-1 to TTN. Here, we report biochemical and structural characterization of TtnD, a prenylated FMN (prFMN)-dependent decarboxylase belonging to the UbiD family that catalyzes the penultimate step of TTN biosynthesis.
View Article and Find Full Text PDFPrevious work suggested that hemoglobin (Hb) tetramer formation slows autoxidation and hemin loss and that the naturally occurring mutant, Hb Providence (HbProv; βK82D), is much more resistant to degradation by HO We have examined systematically the effects of genetic cross-linking of Hb tetramers with and without the HbProv mutation on autoxidation, hemin loss, and reactions with HO, using native HbA and various wild-type recombinant Hbs as controls. Genetically cross-linked Hb Presbyterian (βN108K) was also examined as an example of a low oxygen affinity tetramer. Our conclusions are: (a) at low concentrations, all the cross-linked tetramers show smaller rates of autoxidation and hemin loss than HbA, which can dissociate into much less stable dimers and (b) the HbProv βK82D mutation confers more resistance to degradation by HO, by markedly inhibiting oxidation of the β93 cysteine side chain, particularly in cross-linked tetramers and even in the presence of the destabilizing Hb Presbyterian mutation.
View Article and Find Full Text PDFBacterial spot, caused by Xanthomonas spp., is one of the major bacterial diseases in pepper (Capsicum annuum L.).
View Article and Find Full Text PDFMutations in hemoglobin can cause a wide range of phenotypic outcomes, including anemia due to protein instability and red cell lysis. Uncovering the biochemical basis for these phenotypes can provide new insights into hemoglobin structure and function as well as identify new therapeutic opportunities. We report here a new hemoglobin α chain variant in a female patient with mild anemia, whose father also carries the trait and is from the Turkish city of Kirklareli.
View Article and Find Full Text PDFWater molecules can enter the heme pockets of unliganded myoglobins and hemoglobins, hydrogen bond with the distal histidine, and introduce steric barriers to ligand binding. The spectrokinetics of photodissociated CO complexes of human hemoglobin and its isolated α and β chains were analyzed for the effect of heme hydration on ligand rebinding. A strong coupling was observed between heme hydration and quaternary state.
View Article and Find Full Text PDFWe present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals.
View Article and Find Full Text PDFThe bacterial spot of tomato, caused by Xanthomonas spp., is a very important disease, especially in the hot and humid periods of the year. The chemical control of the disease has not been very effective for a number of reasons.
View Article and Find Full Text PDFA pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins.
View Article and Find Full Text PDFWe have developed the method of picosecond Laue crystallography and used this capability to probe ligand dynamics in tetrameric R-state hemoglobin (Hb). Time-resolved, 2 Å-resolution electron density maps of photolyzed HbCO reveal the time-dependent population of CO in the binding (A) and primary docking (B) sites of both α and β subunits from 100 ps to 10 μs. The proximity of the B site in the β subunit is about 0.
View Article and Find Full Text PDFAlthough molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring.
View Article and Find Full Text PDFHis(E7) to Trp replacements in HbA lead to markedly biphasic bimolecular CO rebinding after laser photolysis. For isolated mutant subunits, the fraction of fast phase increases with increasing [CO], suggesting a competition between binding to an open conformation with an empty E7 channel and relaxation to blocked or closed, slowly reacting states. The rate of conformational relaxation of the open state is ∼18,000 s(-1) in α subunits and ∼10-fold faster in β subunits, ∼175,000 s(-1).
View Article and Find Full Text PDFThe entry of a water molecule into the distal heme pocket of pentacoordinate heme proteins such as myoglobin and the alpha,beta chains of hemoglobin can be detected by time-resolved spectroscopy in the heme visible bands after photolysis of the CO complex. Reviewing the evidence from spectrokinetic studies of Mb variants, we find that this optical method measures the occupancy of non(heme)coordinated water in the distal pocket, n(w), with high fidelity. This evidence further suggests that perturbation of the kinetic barrier presented by distal pocket water is often the dominant mechanism by which active site mutations affect the bimolecular rate constant for CO binding.
View Article and Find Full Text PDFInternal water molecules are important to protein structure and function, but positional disorder and low occupancies can obscure their detection by X-ray crystallography. Here, we show that water can be detected within the distal cavities of myoglobin mutants by subtle changes in the absorbance spectrum of pentacoordinate heme, even when the presence of solvent is not readily observed in the corresponding crystal structures. A well-defined, noncoordinated water molecule hydrogen bonded to the distal histidine (His64) is seen within the distal heme pocket in the crystal structure of wild type (wt) deoxymyoglobin.
View Article and Find Full Text PDFThe pathways for ligand entry and exit in myoglobin have now been well established by a wide variety of experimental results, including pico- to nano- to microsecond transient absorbance measurements and time-resolved X-ray crystallographic measurements. Trp insertions have been used to block, one at a time, the three major cavities occupied by photodissociated ligands. In this work, we review the effects of the L29(B10)W mutation, which places a large indole ring in the initial 'docking site' for photodissociated ligands.
View Article and Find Full Text PDFA previously undescribed spectrokinetic assay for the entry of water into the distal heme pocket of wild-type and mutant myoglobins is presented. Nanosecond photolysis difference spectra were measured in the visible bands of sperm whale myoglobin as a function of distal pocket mutation and temperature. A small blue shift in the 560-nm deoxy absorption peak marked water entry several hundred nanoseconds after CO photodissociation.
View Article and Find Full Text PDFThe hemoglobin family of proteins, ubiquitous in all domains of life, evolved from an ancestral protein of primordial function to extant hemoglobins that perform a myriad of functions with diverged biochemical properties. Study of homologs in bacterial hyperthermophiles may shed light on both mechanisms of adaptation to extreme conditions and the nature of the ancestral protein. A hemoglobin was identified in Aquifex aeolicus, cloned, recombinantly expressed, purified, and characterized.
View Article and Find Full Text PDFA detailed mechanistic understanding of how a protein functions requires knowledge not only of its static structure, but also how its conformation evolves as it executes its function. The recent development of picosecond time-resolved X-ray crystallography has allowed us to visualize in real time and with atomic detail the conformational evolution of a protein. Here, we report the photolysis-induced structural evolution of wild-type and L29F myoglobin over times ranging from 100 ps to 3 micros.
View Article and Find Full Text PDFWe report picosecond time-resolved x-ray diffraction from the myoglobin (Mb) mutant in which Leu29 is replaced by Phe (L29Fmutant). The frame-by-frame structural evolution, resolved to 1.8 angstroms, allows one to literally "watch" the protein as it executes its function.
View Article and Find Full Text PDFThe crystal structure of the C24A mutant of Azotobacter vinelandii 7Fe ferredoxin (FdI) has been solved and refined at 2.0-A resolution. The structure is isomorphous to native FdI except at the site of mutation where A24 moves toward the [4Fe-4S] cluster.
View Article and Find Full Text PDF