J Phys Condens Matter
February 2020
We investigate the magnetic field variation of the thermally activated flux flow resistivity, ρ and flux flow critical current density, J , in a weakly pinned thin film of the amorphous superconductor a-MoGe, where vortices are in a fluid state over a large range of magnetic fields. We show that both quantities can be understood within the framework of collective pinning theory. In particular, our results demonstrate that a 'peak effect' can arise at the order-disorder transition of the vortex lattice even when both the ordered and disordered states are vortex fluids, such as the boundary between a hexatic vortex fluid and an isotropic vortex liquid.
View Article and Find Full Text PDFThe hexatic fluid refers to a phase in between a solid and a liquid that has short-range positional order but quasi-long-range orientational order. In the celebrated theory of Berezinskii, Kosterlitz, and Thouless and subsequently refined by Halperin, Nelson, and Young, it was predicted that a two-dimensional hexagonal solid can melt in two steps: first, through a transformation from a solid to a hexatic fluid, which retains quasi-long-range orientational order; and then from a hexatic fluid to an isotropic liquid. In this Letter, using a combination of real space imaging and transport measurements, we show that the two-dimensional vortex lattice in an a-MoGe thin film follows this sequence of melting as the magnetic field is increased.
View Article and Find Full Text PDF