Many features of the sequence of action potentials produced by repeated stimulation of a patch of cardiac muscle can be modeled by a 1D mapping, but not the full behavior included in the restitution portrait. Specifically, recent experiments have found that (i) the dynamic and S1-S2 restitution curves are different (rate dependence) and (ii) the approach to steady state, which requires many action potentials (accommodation), occurs along a curve distinct from either restitution curve. Neither behavior can be produced by a 1D mapping.
View Article and Find Full Text PDFRestitution, the characteristic shortening of action potential duration (APD) with increased heart rate, has been studied extensively because of its purported link to the onset of fibrillation. Restitution is often represented in the form of mapping models where APD is a function of previous diastolic intervals (DIs) and/or APDs, A(n+1)=F(D(n),A(n),D(n-1),A(n-1),..
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
June 2004
Introduction: Electrical restitution, relating action potential duration (APD) to diastolic interval (DI), was believed to determine the stability of heart rhythm. However, recent studies demonstrate that stability also depends on long-term APD changes caused by memory. This study presents a new method for investigation of rate- and memory-dependent aspects of restitution and for assessment of mapping models of APD.
View Article and Find Full Text PDF