During embryonic development the placental vasculature acts as a major hematopoietic niche, where endothelial to hematopoietic transition ensures emergence of hematopoietic stem cells (HSCs). However, the molecular mechanisms that regulate the placental hematoendothelial niche are poorly understood. Using a parietal trophoblast giant cell (TGC)-specific knockout mouse model and single-cell RNA-sequencing, we show that the paracrine factors secreted by the TGCs are critical in the development of this niche.
View Article and Find Full Text PDFMethyltransferase-like 3 (METTL3), the catalytic enzyme of methyltransferase complex for m6A methylation of RNA, is essential for mammalian development. However, the importance of METTL3 in human placentation remains largely unexplored. Here, we show that a fine balance of METTL3 function in trophoblast cells is essential for successful human placentation.
View Article and Find Full Text PDFThe placenta establishes a maternal-fetal exchange interface to transport nutrients and gases between the mother and the fetus. Establishment of this exchange interface relies on the development of multinucleated syncytiotrophoblasts (SynT) from trophoblast progenitors, and defect in SynT development often leads to pregnancy failure and impaired embryonic development. Here, we show that mouse embryos with conditional deletion of transcription factors GATA2 and GATA3 in labyrinth trophoblast progenitors (LaTPs) have underdeveloped placenta and die by ~embryonic day 9.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2022
Healthy progression of human pregnancy relies on cytotrophoblast (CTB) progenitor self-renewal and its differentiation toward multinucleated syncytiotrophoblasts (STBs) and invasive extravillous trophoblasts (EVTs). However, the underlying molecular mechanisms that fine-tune CTB self-renewal or direct its differentiation toward STBs or EVTs during human placentation are poorly defined. Here, we show that Hippo signaling cofactor WW domain containing transcription regulator 1 (WWTR1) is a master regulator of trophoblast fate choice during human placentation.
View Article and Find Full Text PDFEarly pregnancy loss affects ∼15% of all implantation-confirmed human conceptions. However, evolutionarily conserved molecular mechanisms that regulate self-renewal of trophoblast progenitors and their association with early pregnancy loss are poorly understood. Here, we provide evidence that transcription factor TEAD4 ensures survival of postimplantation mouse and human embryos by controlling self-renewal and stemness of trophoblast progenitors within the placenta primordium.
View Article and Find Full Text PDFIn utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors.
View Article and Find Full Text PDFA successful pregnancy is critically dependent upon proper placental development and function. During human placentation, villous cytotrophoblast (CTB) progenitors differentiate to form syncytiotrophoblasts (SynTBs), which provide the exchange surface between the mother and fetus and secrete hormones to ensure proper progression of pregnancy. However, epigenetic mechanisms that regulate SynTB differentiation from CTB progenitors are incompletely understood.
View Article and Find Full Text PDFEarly mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
January 2018
Objective: To evaluate whether the anti-LINGO-1 antibody has immunomodulatory effects.
Methods: Human peripheral blood mononuclear cells (hPBMCs), rat splenocytes, and rat CD4 T cells were assessed to determine whether LINGO-1 was expressed and was inducible. Anti-LINGO-1 Li81 (0.
The 2017 11th Workshop on Recent Issues in Bioanalysis took place in Los Angeles/Universal City, California, on 3-7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule analysis involving LC-MS, hybrid ligand-binding assay (LBA)/LC-MS and LBA approaches.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
January 2018
Objectives: To investigate the immune response to vaccinations in patients with relapsing forms of MS treated with delayed-release dimethyl fumarate (DMF) vs nonpegylated interferon (IFN).
Methods: In this open-label, multicenter study, patients received 3 vaccinations: (1) tetanus-diphtheria toxoid (Td) to test T-cell-dependent recall response, (2) pneumococcal vaccine polyvalent to test T-cell-independent humoral response, and (3) meningococcal (groups A, C, W-135, and Y) oligosaccharide CRM conjugate to test T-cell-dependent neoantigen response. Eligible patients were aged 18-55 years, diagnosed with relapsing-remitting MS (RRMS), and either treated for ≥6 months with an approved dose of DMF or for ≥3 months with an approved dose of nonpegylated IFN.
Mammalian reproduction is critically dependent on trophoblast cells, which ensure embryo implantation and placentation. Development of trophoblast cell lineages is a multi-step process and relies upon proper spatial and temporal gene expression, which is regulated by multiple transcription factors. However, most of the transcription factors that are implicated in trophoblast development regulate gene expression at a specific developmental stage or in a specific trophoblast subtype.
View Article and Find Full Text PDFGATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development.
View Article and Find Full Text PDFThe 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5 day, week-long event - A Full Immersion Bioanalytical Week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS and LBA approaches, including the focus on biomarkers and immunogenicity.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
August 2014
Objective: To evaluate the safety, tolerability, and pharmacokinetics (PK) of BIIB033 (anti-LINGO-1 monoclonal antibody) in healthy volunteers and participants with multiple sclerosis (MS).
Methods: In 2 separate randomized, placebo-controlled studies, single ascending doses (SAD; 0.1-100 mg/kg) of BIIB033 or placebo were administered via IV infusion or subcutaneous injection to 72 healthy volunteers, and multiple ascending doses (MAD; 0.
Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing versus differentiated PSC populations are poorly understood.
View Article and Find Full Text PDFEmbryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency.
View Article and Find Full Text PDFThe first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood.
View Article and Find Full Text PDFIn the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages.
View Article and Find Full Text PDFAngiogenesis is critically dependent on endothelial cell-specific transcriptional mechanisms. However, the molecular processes that regulate chromatin domains and thereby dictate transcription of key endothelial genes are poorly understood. Here, we report that, in endothelial cells, angiogenic signal-mediated transcriptional induction of Vegfr1 (vascular endothelial growth factor receptor 1) is dependent on the histone chaperone, HIRA (histone cell cycle regulation-defective homolog A).
View Article and Find Full Text PDFObjective: Analyses were conducted to determine the clinical utility of measuring JC virus (JCV) DNA in blood or urine of natalizumab-treated multiple sclerosis (MS) patients to predict the risk of progressive multifocal leukoencephalopathy (PML).
Methods: A total of 12,850 blood and urine samples from nearly 1,400 patients participating in natalizumab clinical trials were tested for JCV DNA using a commercially available quantitative polymerase chain reaction (qPCR) assay. A subset of these samples was also tested using a more sensitive qPCR assay developed at the National Institutes of Health (NIH).
During early mammalian development, genesis of the first two cell lineages, inner cell mass (ICM) and trophectoderm (TE), is dependent upon functions of key transcription factors that are expressed in a regulated and spatially restricted fashion. In this study, we demonstrate that during early mouse development, mRNA expression of transcription factor GATA3 is induced at the 4-cell stage and is consistently present during pre-implantation embryonic development. Interestingly, at the blastocyst stage, Gata3 mRNA is selectively up-regulated within the TE lineage, and GATA3 protein is abundantly present only in the TE but not in the ICM.
View Article and Find Full Text PDFGATA transcription factors are important regulators of tissue-specific gene expression during development. GATA2 and GATA3 have been implicated in the regulation of trophoblast-specific genes. However, the regulatory mechanisms of GATA2 expression in trophoblast cells are poorly understood.
View Article and Find Full Text PDF