Large earthquakes breaking the frontal faults of the Himalayan thrust system produce surface ruptures, quickly altered due to the monsoon conditions. Therefore, the location and existence of the Mw8.3 1934 Bihar-Nepal surface ruptures remain vividly disputed.
View Article and Find Full Text PDFThe largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA).
View Article and Find Full Text PDFThe ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively.
View Article and Find Full Text PDFTemporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m(-2) d(-1). Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO(2) concentration and at six locations in the soil: four points having a high flux, and two background reference points.
View Article and Find Full Text PDFThe concentration activity of radon-222 has been monitored, with some interruptions, from 1997 to 2005 in the end section of a slightly rising, dead-end, 38-m long tunnel located in the Phulchoki hill, near Kathmandu, Nepal. While a high concentration varying from 6 x 10(3) Bq m(-3) to 10 x 10(3) Bq m(-3) is observed from May to September (rainy summer season), the concentration remains at a low level of about 200 Bq m(-3) from October to March (dry winter season). This reduction of radon concentration is associated with natural ventilation of the tunnel, which, contrary to expectations for a rising tunnel, takes place mainly from October to March when the outside air temperature drops below the average tunnel temperature.
View Article and Find Full Text PDF