Significant attention has been directed toward core-shell GaInN/GaN multiple-quantum shell (MQS) nanowires (NWs) in the context of high-efficiency micro light-emitting diodes (micro-LEDs). These independent three-dimensional NWs offer the advantage of reducing the impact of sidewall etching regions. Furthermore, the emitting plane on the sidewalls demonstrates either nonpolar or semipolar orientation, while the dislocation density is exceptionally low.
View Article and Find Full Text PDFTo light emitting diodes (LEDs), solving the common non-uniform current injection and efficiency degradation issues in (0001) plane micro-LED is essential. Herein, we investigated the light emission characteristics of various mesa sizes and different p-electrode areas toward the realization of coaxial GaInN/GaN multi-quantum-shell (MQS) nanowires (NWs)-based micro-LEDs. As the mesa area was reduced, the current leakage decreases, and further reduction of the area showed a possibility of realizing micro-LED with less current leakage.
View Article and Find Full Text PDFCore-shell GaInN/GaN multiquantum shell (MQS) nanowires (NWs) are gaining great attention for high-efficiency micro-light-emitting diodes (micro-LEDs) owing to the minimized etching region on their sidewall, nonpolar or semipolar emission planes, and ultralow density of dislocations. In this study, we evaluated the changes in NW morphologies and the corresponding device properties induced by GaInN/GaN superlattice (SL) structures. The cathodoluminescence intensities of the samples with 20 and 40 pairs of SLs were about 2.
View Article and Find Full Text PDFGaInN/GaN multi-quantum-shell (MQS) nanowires (NWs) are gaining increasing attention as promising materials for developing highly efficient long-wavelength micro-light emitting diodes (LEDs). To improve the emission properties in GaInN/GaN MQS NWs, it is necessary to suppress the emission from the (0001) -plane MQS at the apex region, which featured with low crystalline quality. In this study, we investigated the enhancement of optical properties and the realization of micro-LEDs by confirming the effect of the (0001) plane region.
View Article and Find Full Text PDF