The modulation of photophysical behaviour of small organic molecules in the presence of macrocycles is one of the most interesting areas of research. In this work we reported the interaction of two biologically active molecules 3-hydroxyflavone and 7-hydroxyflavone with macrocyclic host cucurbit [7]uril in aqueous medium. To investigate the change of photophysical properties of these two flavones, we have used steady state absorption, fluorescence, time resolved fluorescence emission spectroscopy and isothermal titration calorimetric technique.
View Article and Find Full Text PDFA new polydentate fac-trioxo molybdenum complex, [MoO(3)L](3-) {LH(3) = nitrilotriacetic acid}, has been synthesized by the reaction of lithium molybdate with iminodiacetic acid. The trinegative complex anion coordinates the alkali metal cations, K(+), Rb(+) or Cs(+). The potassium, rubidium and cesium complexes, [Li{K(H(2)O)(2)}MoO(3)L](n) (1), [Li{Rb(H(2)O)(2)}MoO(3)L](n) (2) and [Cs{Li(H(2)O)}(2)MoO(3)L](n) (3), form heterotrimetallic coordination chains, containing planar rings of Li(2)M(2) (M = K or Rb) and Cs(4).
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2012
Several new molecular frameworks with interesting structures, based on clusters of main group elements have been studied at different levels of theory with various basis sets. Conceptual density functional theory based reactivity descriptors and nucleus independent chemical shift provide important insights into their bonding, reactivity, stability and aromaticity.
View Article and Find Full Text PDFA local reactivity difference index R(k) is shown to be able to predict the local electrophilic and/or nucleophilic activation within an organic molecule. Together with the electrophilic and/or nucleophilic behavior of the center k given by the sign, the magnitude of the R(k) index accounts for the extent of the electronic activation, a behavior that allows for the use of the R(k) index as a measure of the molecular reactivity especially in polar processes.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2011
The effect of counterions on the bonding, stability and aromaticity of trigonal dianion metal clusters has been analyzed through the behavior of various conceptual density functional theory based reactivity descriptors and the nucleus independent chemical shift calculated at different levels of theory, comprising one-determinant approaches and beyond (QCISD, CASSCF(8,8) and NEVPT2), for a proper benchmarking. Although several important insights into the counter-ion effects are obtained, much needs to be done in order to have a transparent idea therein.
View Article and Find Full Text PDFVarious isomers of the trigonal dianion metal clusters, X(3)(2-), X = Be, Mg, Ca, and their mono- and disodium complexes are optimized at the B3LYP/6-311+G(d) level. Different conceptual density functional theory based reactivity descriptors as well as the induced magnetic field values are calculated to understand the stability and aromaticity of these systems. Possibility of bond stretch isomerism is explored.
View Article and Find Full Text PDF