Cough is a common and commonly ignored symptom of lung disease. Cough is often perceived as difficult to quantify, frequently self-limiting, and non-specific. However, cough has a central role in the clinical detection of many lung diseases including tuberculosis (TB), which remains the leading infectious disease killer worldwide.
View Article and Find Full Text PDFJ Rheumatol
August 2024
Cough is a common and commonly ignored symptom of lung disease. Cough is often perceived as difficult to quantify, frequently self-limiting, and non-specific. However, cough has a central role in the clinical detection of many lung diseases including tuberculosis (TB), which remains the leading infectious disease killer worldwide.
View Article and Find Full Text PDFBackground: The two-way partial AUC has been recently proposed as a way to directly quantify partial area under the ROC curve with simultaneous restrictions on the sensitivity and specificity ranges of diagnostic tests or classifiers. The metric, as originally implemented in the tpAUC R package, is estimated using a nonparametric estimator based on a trimmed Mann-Whitney U-statistic, which becomes computationally expensive in large sample sizes. (Its computational complexity is of order [Formula: see text], where [Formula: see text] and [Formula: see text] represent the number of positive and negative cases, respectively).
View Article and Find Full Text PDFBackground: Public involvement in research is a growing phenomenon as well as a condition of research funding, and it is often referred to as coproduction. Coproduction involves stakeholder contributions at every stage of research, but different processes exist. However, the impact of coproduction on research is not well understood.
View Article and Find Full Text PDFMobile devices offer a scalable opportunity to collect longitudinal data that facilitate advances in mental health treatment to address the burden of mental health conditions in young people. Sharing these data with the research community is critical to gaining maximal value from rich data of this nature. However, the highly personal nature of the data necessitates understanding the conditions under which young people are willing to share them.
View Article and Find Full Text PDFOne of the promising opportunities of digital health is its potential to lead to more holistic understandings of diseases by interacting with the daily life of patients and through the collection of large amounts of real-world data. Validating and benchmarking indicators of disease severity in the home setting is difficult, however, given the large number of confounders present in the real world and the challenges in collecting ground truth data in the home. Here we leverage two datasets collected from patients with Parkinson's disease, which couples continuous wrist-worn accelerometer data with frequent symptom reports in the home setting, to develop digital biomarkers of symptom severity.
View Article and Find Full Text PDFBackground: While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized.
Methods: To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium.
Results: Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work.
Background: Alzheimer's disease (AD) is an incurable neurodegenerative disease currently affecting 1.75% of the US population, with projected growth to 3.46% by 2050.
View Article and Find Full Text PDFConsumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder associated with motor and non-motor symptoms. Current treatments primarily focus on managing motor symptom severity such as tremor, bradykinesia, and rigidity. However, as the disease progresses, treatment side-effects can emerge such as on/off periods and dyskinesia.
View Article and Find Full Text PDFDiscovering drugs that efficiently treat brain diseases has been challenging. Genetic variants that modulate the expression of potential drug targets can be utilized to assess the efficacy of therapeutic interventions. We therefore employed Mendelian Randomization (MR) on gene expression measured in brain tissue to identify drug targets involved in neurological and psychiatric diseases.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1038/s41467-020-20261-6.
View Article and Find Full Text PDFThe temporal molecular changes that lead to disease onset and progression in Alzheimer's disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample.
View Article and Find Full Text PDFThe AD Knowledge Portal (adknowledgeportal.org) is a public data repository that shares data and other resources generated by multiple collaborative research programs focused on aging, dementia, and Alzheimer's disease (AD). In this article, we highlight how to use the Portal to discover and download genomic variant and transcriptomic data from the same individuals.
View Article and Find Full Text PDFThe availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes).
View Article and Find Full Text PDFWe present a consensus atlas of the human brain transcriptome in Alzheimer's disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders.
View Article and Find Full Text PDFStructural variants (SVs) contribute to many disorders, yet, functionally annotating them remains a major challenge. Here, we integrate SVs with RNA-sequencing from human post-mortem brains to quantify their dosage and regulatory effects. We show that genic and regulatory SVs exist at significantly lower frequencies than intergenic SVs.
View Article and Find Full Text PDFSchizophrenia and bipolar disorder are serious mental illnesses that affect more than 2% of adults. While large-scale genetics studies have identified genomic regions associated with disease risk, less is known about the molecular mechanisms by which risk alleles with small effects lead to schizophrenia and bipolar disorder. In order to fill this gap between genetics and disease phenotype, we have undertaken a multi-cohort genomics study of postmortem brains from controls, individuals with schizophrenia and bipolar disorder.
View Article and Find Full Text PDFMotivation: Late onset Alzheimer's disease is currently a disease with no known effective treatment options. To better understand disease, new multi-omic data-sets have recently been generated with the goal of identifying molecular causes of disease. However, most analytic studies using these datasets focus on uni-modal analysis of the data.
View Article and Find Full Text PDFIn the HTML version of the article originally published, the author group 'The Schizophrenia Working Group of the Psychiatric Genomics Consortium' was displayed incorrectly. The error has been corrected in the HTML version of the article.
View Article and Find Full Text PDFTranscriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility.
View Article and Find Full Text PDFThe response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure.
View Article and Find Full Text PDF