The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55-60 degrees C and an apparent midpoint melting temperature (Tm) of 70 degrees C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized.
View Article and Find Full Text PDFC-type cytochromes with histidine-methionine (His-Met) iron coordination play important roles in electron-transfer reactions and in enzymes. Low-temperature electron paramagnetic resonance (EPR) spectra of low-spin ferric cytochromes c can be divided into two groups, depending on the spread of g values: the normal rhombic ones with small g anisotropy and g(max) below 3.2, and those featuring large g anisotropy with g(max) between 3.
View Article and Find Full Text PDFClass I ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleotides in mammals and many other organisms. The RNR subunit R2 contains a dinuclear iron center, which in its diferrous form spontaneously reacts with O2, forming a mu-oxo-bridged diferric cluster and a stable tyrosyl radical. Here, we present the first crystal structures of R2 from mouse with its native dinuclear iron center, both under reducing and oxidizing conditions.
View Article and Find Full Text PDFThe R2 dimer of mouse ribonucleotide reductase contains a dinuclear iron-oxygen cluster and tyrosyl radical/subunit. The dinuclear diferrous form reacts with dioxygen to generate the tyrosyl radical essential for the catalytic reaction that occurs at the R1 dimer. It is important to understand how the reactivity toward oxygen is related to the crystal structure of the dinuclear cluster.
View Article and Find Full Text PDF