Although crucial for their correct function, the mechanisms controlling surface expression of ion channels are poorly understood. In the case of the voltage-gated potassium channel KV10.1, this is determinant not only for its physiological function in brain, but also for its pathophysiology in tumors and possible use as a therapeutic target.
View Article and Find Full Text PDFK(V)10.1 is a voltage-gated potassium channel aberrantly expressed in many cases of cancer, and participates in cancer initiation and tumor progression. Its action as an oncoprotein can be inhibited by a functional monoclonal antibody, indicating a role for channels located at the plasma membrane, accessible to the antibody.
View Article and Find Full Text PDFIonotropic, AMPA-type glutamate receptors (GluRs) critically shape excitatory synaptic signals in the CNS. Ligand binding induces conformational changes in the glutamate-binding domain of the receptors that are converted into opening of the channel pore via three short linker sequences, a process referred to as gating. Although crystallization of the glutamate-binding domain and structural models of the ion pore advanced our understanding of ligand-binding dynamics and pore movements, the allosteric coupling of both events by the short linkers has not been described in detail.
View Article and Find Full Text PDF