Publications by authors named "Solovyeva M"

The allelic diversity of exon 2 (DQB gene) and exon 3 (DRB gene) of major histocompatibility complex class II was studied for the first time in two species of the landlocked pinnipeds, Baikal (N = 79) and Caspian (N = 32) seals, and these were in compared with the widespread Arctic species, the ringed seal (N = 13). The analysis of the second exon comprising the antigen-binding region revealed high allelic diversity in all three species but the pattern of the diversity was the most specific for the Baikal seal. This species differs from the other two by the smallest number of alleles in the population, yet they have the largest number of alleles per individual and by the maximum similarity of individual genotypes.

View Article and Find Full Text PDF

Tissue contamination with persistent organic pollutants (POPs) in organisms proved possible to comprehensively characterize in a single test by combining gas chromatography and high-resolution accurate mass spectrometry. Adipose tissue samples were collected from two Caspian seals (Pusa caspica Gmelin, 1788) found dead on the Caspian Sea shore in 2020. Organochlorine pesticides, primarily DDT and HCH, and polychlorinated biphenyls (PCBs) were major pollutants found in the Caspian seals.

View Article and Find Full Text PDF

Total Mercury (THg) content was determined in the fur of 64 Caspian seals, in the whiskers of 59 individuals and whole blood of 29 individuals. The THg content in Caspian seal fur varied from 258 to 8511 μg/kg, in whiskers from 954 to 12,957 μg/kg, and in whole blood from 88 to 350 μg/l. There were no statistically significant differences in mercury concentration in biomaterial between males and females (Kruskal-Wallis test, p < 0.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) are among the genetic tools for the mining of genomic loci associated with useful agronomic traits. The study enabled us to find new genetic markers associated with grain yield as well as quality. The sample under study consisted of spring wheat cultivars developed in different decades of the last century.

View Article and Find Full Text PDF

The Barents Sea shelf is one of the most economically promising regions in the Arctic in terms of its resources and geographic location. However, benthic microbial communities of the northeastern Barents Sea are still barely studied. Here, we present a detailed systematic description of the structures of microbial communities located in the sediments and bottom water of the northeastern Barents Sea based on 16S rRNA profiling and a qPCR assessment of the total prokaryotic abundance in 177 samples.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examined the genetic variation in two mitochondrial DNA (mtDNA) regions, specifically the cytochrome b gene and the control region, in Baikal seals (Pusa sibirica).
  • - Researchers used multiple samples collected over different locations and times to analyze this genetic diversity for the first time in this species.
  • - The findings indicate that the Baikal seal population is relatively new in evolutionary terms and is currently experiencing a growth in numbers.
View Article and Find Full Text PDF

In addition to the band gap of a semiconducting photocatalyst, its band edges are important because they play a crucial role in the analysis of charge transfer and possible pathways of the photocatalytic reaction. The Mott-Schottky method using electrochemical impedance spectroscopy is the most common experimental technique for the determination of the electron potential in photocatalysts. This method is well suited for large crystals, but in the case of nanocatalysts, when the thickness of the charged layer is comparable with the size of the nanocrystals, the capacitance of the Helmholtz layer can substantially affect the measured potential.

View Article and Find Full Text PDF

Adsorption heat transformation and storage (AHTS) is an environmentally benign and energy-saving alternative to common compression chillers and heat pumps. The low specific power (SP) of adsorption systems is a key drawback that hinders their broader dissemination. The optimization of adsorption dynamics is a prerequisite for SP enhancement.

View Article and Find Full Text PDF
Article Synopsis
  • The adsorption method for atmospheric water harvesting (AWH) utilizes innovative composite sorbents made from hygroscopic salts within MIL-101(Cr) to effectively collect potable water in arid regions.
  • Research shows that the CaCl₂/MIL-101(Cr) composite achieves a high water uptake of 0.52-0.59 g(H₂O)/g(composite) per cycle, outperforming other adsorbents in extremely dry climates like Saudi Arabia and the Sahara.
  • The study highlights a unique synergistic effect in water adsorption, enhanced by pore confinement which improves water transport and alters sorption properties, ultimately showcasing the composite's strong potential for practical AWH applications.
View Article and Find Full Text PDF

SAPO-34 nanocrystals with sizes of 50-150 nm were obtained via steam-assisted crystallization (SAC) for 5 h at 200 °C from two types of aluminum precursors-aluminum isopropoxide and boehmite. A reaction mixture composition with a small amount of organic template tetraehylammonium hydroxide (TEAOH) was used with the molar ratio TEAOH/AlO = 1/1. The alumina precursor type and duration of the SAC (5 and 24 h) on the crystal size, texture, and acid properties were investigated.

View Article and Find Full Text PDF

The development of active and stable photocatalysts for the degradation of volatile organic compounds under visible light is important for efficient light utilization and environmental protection. Titanium dioxide doped with nitrogen is known to have a high activity but it exhibits a relatively low stability due to a gradual degradation of nitrogen species under highly powerful radiation. In this paper, we show that the combination of N-doped TiO with bismuth tungstate prevents its degradation during the photocatalytic process and results in a very stable composite photocatalyst.

View Article and Find Full Text PDF

Aluminum-based metal-organic framework (MOF) CAU-10-H is a promising candidate for heat transformation and water harvesting applications due to its hydrothermal stability, beneficial step-wise water adsorption isotherm and low toxicity. In this study, the effects of the framework flexibility and structural defects on the mechanism of water sorption in CAU-10-H were studied by grand canonical Monte Carlo (GCMC) methods. It was shown by the simulations that the rigid ideal MOF framework is hydrophobic.

View Article and Find Full Text PDF

Experimental dependency of the photosystem's response on the wavelength of exciting radiation, also known as action spectrum, may be substantially affected by the spectrum shape of this radiation. This is especially important in the case, when different radiation sources are used for the investigation of action spectrum. For instance, too wide emission peaks of radiation sources can blur the scopes of actual action spectrum and distort information about the properties of photosystem at certain wavelength regions.

View Article and Find Full Text PDF

Background: There are data on the safety of cancer surgery and the efficacy of preventive strategies on the prevention of postoperative symptomatic COVID-19 in these patients. But there is little such data for any elective surgery. The main objectives of this study were to examine the safety of bariatric surgery (BS) during the coronavirus disease 2019 (COVID-19) pandemic and to determine the efficacy of perioperative COVID-19 protective strategies on postoperative symptomatic COVID-19 rates.

View Article and Find Full Text PDF

In this study, various solid uranium oxycompounds and TiO-supported materials based on nanocrystalline anatase TiO are synthesized using uranyl nitrate hexahydrate as a precursor. All uranium-contained samples are characterized using N adsorption, XRD, UV-vis, Raman, TEM, XPS and tested in the oxidation of a volatile organic compound under visible light of the blue region to find correlations between their physicochemical characteristics and photocatalytic activity. Both uranium oxycompounds and TiO-supported materials are photocatalytically active and are able to completely oxidize gaseous organic compounds under visible light.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) possess unique flexibility of structure and properties, which drives them toward applications as water adsorbents in many emerging technologies, such as adsorptive heat transformation, water harvesting from the air, dehumidification, and desalination. A deep understanding of the surface phenomena is a prerequisite for the target-oriented design of MOFs with the required adsorption properties. In this work, we comprehensively study the effect of functional groups on water adsorption on a series CAU-10- substituted with both hydrophilic ( = NH) and hydrophobic ( = NO) groups in the linker.

View Article and Find Full Text PDF

The organic linker in a metal organic framework (MOF) affects its adsorption behavior and performance, and its structure and dynamics play a role in the modulation of the adsorption properties. In this work, the combination of H nuclear magnetic resonance (NMR) longitudinal relaxometry and theoretical calculations allowed details of the structure and dynamics of the organic linker in the NH-MIL-125 MOF to be obtained. In particular, fast field cycling (FFC) NMR, applied here for the first time on MOFs, was used to disclose the dynamics of the amino group and its electronic environment through the analysis of the N quadrupole relaxation peaks, observed in the frequency interval 0.

View Article and Find Full Text PDF

The TiO photocatalyst doped with nitrogen was synthesized via a precipitation method and investigated in the oxidation of acetone vapor under UV (371 nm) and visible light (450 nm). The data were collected in a continuous-flow set-up equipped with a long-path IR gas cell for analysis of oxidation products and evaluation of the photocatalytic activity. The IR spectra for inlet and outlet reaction mixtures and their change during the process are presented.

View Article and Find Full Text PDF

The silica, alumina, ceria, and titania supports were modified with uranyl ions (5 wt%) and investigated using X-ray photoelectron spectroscopy. The data show the U4f photoelectron spectra and charge state of uranium for uranyl ions deposited on different supports. The additional XPS experiments with simultaneous irradiation of the sample using a 450 nm light-emitting diode were performed, and the XPS spectra, revealing a partial reduction of uranium under visible irradiation, are presented.

View Article and Find Full Text PDF

The extensively used thiol antioxidants (dithiothreitol, glutathione, and N-acetylcysteine) in combination with hydroxycobalamine (vitamin B12) gain toxic activity in relation to human lymphocytic leukemia cell line HL60. Combined treatment with thiol and vitamin B12 was followed by early destabilization of lysosomes and apoptotic death of cells. The cytotoxic effect was abolished by caspase inhibitors.

View Article and Find Full Text PDF

Heme oxygenase (HO)-1 degrades the pro-oxidant heme and generates carbon monoxide and antioxidant bilirubin. We have previously shown that in response to hypoxia, HO-1-null mice develop infarcts in the right ventricle of their hearts and that their cardiomyocytes are damaged by oxidative stress. To test whether HO-1 protects against oxidative injury in the heart, we generated cardiac-specific transgenic mice overexpressing different levels of HO-1.

View Article and Find Full Text PDF