The risk of developing diabetes and cardiometabolic disorders is associated with increased levels of alpha-aminoadipic acid and disturbances in the metabolism of branched-chain amino acids. The side effects of the widely used antidiabetic drug metformin include impaired degradation of branched-chain amino acids and inhibition of intracellular thiamin transport. These effects may be interconnected, as thiamine deficiency impairs the functioning of thiamine diphosphate (ThDP)-dependent dehydrogenases of 2-oxo acids involved in amino acids degradation, while diabetes is often associated with perturbed thiamine status.
View Article and Find Full Text PDFTCR-like chimeric antigen receptor (CAR-T) cell therapy has emerged as a game-changing strategy in cancer immunotherapy, offering a broad spectrum of potential antigen targets, particularly in solid tumors containing intracellular antigens. In this study, we investigated the cytotoxicity and functional attributes of in vitro-generated T-lymphocytes, engineered with a TCR-like CAR receptor precisely targeting the cancer testis antigen MAGE-A4. Through viral transduction, T-cells were genetically modified to express the TCR-like CAR receptor and co-cultured with MAGE-A4-expressing tumor cells.
View Article and Find Full Text PDFTransketolase catalyzes the interconversion of keto and aldo sugars. Its coenzyme is thiamine diphosphate. The binding of keto sugar with thiamine diphosphate is possible only after C2 deprotonation of its thiazole ring.
View Article and Find Full Text PDFIn a recent paper, we showed the difference between the first stage of the one-substrate and the two-substrate transketolase reactions - the possibility of transfer of glycolaldehyde formed as a result of cleavage of the donor substrate from the thiazole ring of thiamine diphosphate to its aminopyrimidine ring through the tricycle formation stage, which is necessary for binding and splitting the second molecule of donor substrate [O.N. Solovjeva et al.
View Article and Find Full Text PDFTransketolase catalyzes the transfer of a glycolaldehyde residue from ketose (the donor substrate) to aldose (the acceptor substrate). In the absence of aldose, transketolase catalyzes a one-substrate reaction that involves only ketose. The mechanism of this reaction is unknown.
View Article and Find Full Text PDFWe studied the influence of the acceptor substrate of transketolase on the activity of the enzyme in the presence of reductants. Ribose-5-phosphate in the presence of cyanoborohydride decreased the transketolase catalytic activity. The inhibition is caused by the loss of catalytic function of the coenzyme-thiamine diphosphate.
View Article and Find Full Text PDFA comparative study of the neuroprotective and nootropic activities of two pharmaceutical substances, the HLDF-6 peptide (HLDF-6-OH) and its amide form (HLDF-6-NH2), was conducted. The study was performed in male rats using two models of a neurodegenerative disorder. Cognitive deficit in rats was induced by injection of the beta-amyloid fragment 25-35 (βA 25-35) into the giant-cell nucleus basalis of Meynert or by coinjection of βA 25-35 and ibotenic acid into the hippocampus.
View Article and Find Full Text PDFStudies of thiamine diphosphate-dependent enzymes appear to have commenced in 1937, with the isolation of the coenzyme of yeast pyruvate decarboxylase, which was demonstrated to be a diphosphoric ester of thiamine. For quite a long time, these studies were largely focused on enzymes decarboxylating α-keto acids, such as pyruvate decarboxylase and pyruvate dehydrogenase complexes. Transketolase, discovered independently by Racker and Horecker in 1953 (and named by Racker) [1], did not receive much attention until 1992, when crystal X-ray structure analysis of the enzyme from Saccharomyces cerevisiae was performed [2].
View Article and Find Full Text PDFUntil recently it was assumed that the transketolase-like protein (TKTL1) detected in the tumor tissue, is catalytically active mutant form of human transketolase (hTKT). Human TKT shares 61% sequence identity with TKTL1. And the two proteins are 77% homologous at the amino acid level.
View Article and Find Full Text PDFCatalytic activity has been demonstrated for holotransketolase in the absence of free bivalent cations in the medium. The two active centers of the enzyme are equivalent in both the catalytic activity and the affinity for the substrates. In the presence of free Ca²⁺ (added to the medium from an external source), this equivalence is lost: negative cooperativity is induced on binding of either xylulose 5-phosphate (donor substrate) or ribose 5-phosphate (acceptor substrate), whereupon the catalytic conversion of the bound substrates causes the interaction between the centers to become positively cooperative.
View Article and Find Full Text PDFThe Michaelis constant values for substrates of transketolase from human tissues were determined over a wide range of substrate concentrations. It is shown that K(m) values determined by other authors are significantly overestimated and explained why this is so.
View Article and Find Full Text PDFThe effect of hexacyanoferrate(III) on the catalytic activity of transketolase has been studied. This oxidant inactivates only one of two active sites of the enzyme, the one with a higher affinity to the coenzyme (thiamine diphosphate). The second active site does not lose its catalytic activity.
View Article and Find Full Text PDFRecombinant human (His)(6)-transketolase (hTK) was obtained in preparative amounts by heterologous expression of the gene encoding human transketolase in Escherichia coli cells. The enzyme, isolated in the form of a holoenzyme, was homogeneous by SDS-PAGE; a method for obtaining the apoenzyme was also developed. The amount of active transketolase in the isolated protein preparation was correlated with the content of thiamine diphosphate (ThDP) determined in the same preparation.
View Article and Find Full Text PDFCatalytic activity of two active sites of transketolase and their affinity towards the substrates (xylulose-5-phosphate and ribose-5-phosphate) has been studied in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the active sites exhibit negative cooperativity in binding both xylulose-5-phosphate (donor substrate) and ribose-5-phosphate (acceptor substrate) and positive cooperativity in the catalytic transformation of the substrates. In the presence of Mg2+, nonequivalence of the active sites is not observed.
View Article and Find Full Text PDFCell cycle regulation is dependent on multiple cellular and molecular events. Cell proliferation requires metabolic sources for the duplication of DNA and cell size. However, nucleotide reservoirs are not sufficient to support cell duplication and, therefore, biosynthetic pathways should be upregulated during cell cycle.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
Cleavage by yeast transketolase of the donor substrate, D-xylulose 5-phosphate, in the absence of the acceptor substrate was studied using stopped-flow spectrophotometry. One mole of the substrate was shown to be cleaved in the prestationary phase, leading to the formation of one mole of the reaction product per mole enzyme, which has two active centers. This observation indicates that only one out of the two active centers functions (i.
View Article and Find Full Text PDFThe effect of the type of the cation cofactor of transketolase (i.e., Ca2+ or Mg2+) on its interaction with xylulose 5-phosphate (donor substrate) has been studied.
View Article and Find Full Text PDFThe interaction of transketolase with its acceptor substrate, ribose 5-phosphate, has been studied. The active centers of the enzyme were shown to be functionally nonequivalent with respect to ribose 5-phosphate binding. Under the conditions where only one out of the two active centers of transketolase is functional, their affinities for ribose 5-phosphate are identical.
View Article and Find Full Text PDFTwo new optical methods for transketolase activity assay using only one substrate, xylulose 5-phosphate or glycol aldehyde, have been developed. For transketolase activity assay in the first method, it is necessary to add auxiliary enzyme, glyceraldehyde phosphate dehydrogenase. It is not needed in the second method.
View Article and Find Full Text PDFMotivation: Addition of labeled substrates and the measurement of the subsequent distribution of the labels in isotopomers in reaction networks provide a unique method for assessing metabolic fluxes in whole cells. However, owing to insufficiency of information, attempts to quantify the fluxes often yield multiple possible sets of solutions that are consistent with a given experimental pattern of isotopomers. In the study of the pentose phosphate pathways, the need to consider isotope exchange reactions of transketolase (TK) and transaldolase (TA) (which in past analyses have often been ignored) magnifies this problem; but accounting for the interrelation between the fluxes known from biochemical studies and kinetic modeling solves it.
View Article and Find Full Text PDFYeast transketolase, in addition to catalyzing the transferase reaction through utilization of two substrates--the donor substrate (ketose) and the acceptor substrate (aldose)--is also able to catalyze a one-substrate reaction with only aldose (glycolaldehyde) as substrate. The interaction of glycolaldehyde with holotransketolase results in formation of the transketolase reaction intermediate, dihydroxyethyl-thiamin diphosphate. Then the glycolaldehyde residue is transferred from dihydroxyethyl-thiamin diphosphate to free glycolaldehyde.
View Article and Find Full Text PDFBiochemistry (Mosc)
June 2002
A method for isolation of homogenous transketolase from baker's yeast using immunoaffinity chromatography was significantly simplified. It was demonstrated that transketolase could be isolated from fresh yeast in the form of a complex with a high molecular weight RNA. Storage of yeast led to the dissociation of the complex to a low molecular weight complex and then to the free enzyme.
View Article and Find Full Text PDF