Experimental studies of collective dynamics in lipid bilayers have been challenging due to the energy resolution required to observe these low-energy phonon-like modes. However, inelastic x-ray scattering (IXS) measurements-a technique for probing vibrations in soft and biological materials-are now possible with sub-meV resolution, permitting direct observation of low-energy, phonon-like modes in lipid membranes. Here, IXS measurements with sub-meV energy resolution reveal a low-energy optic-like phonon mode at roughly 3 meV in the liquid-ordered (L) and liquid-disordered phases of a ternary lipid mixture.
View Article and Find Full Text PDFMagnetite and gallium substituted cuboferrites with a composition of GaFeO (0 ≤ x ≤ 1.4) were fabricated by thermal decomposition from acetylacetonate salts. The effect of Ga cation substitution on the structural and thermomagnetic behavior of 4-12 nm sized core-shell particles was explored by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements.
View Article and Find Full Text PDFProton transport is indispensable for cell life. It is believed that molecular mechanisms of proton movement through different types of proton-conducting molecules have general universal features. However, elucidation of such mechanisms is a challenge.
View Article and Find Full Text PDFWe have studied by means of small angle neutron scattering and diffraction, and molecular dynamics simulations the effect of lipid membrane fluidity on the amyloid-beta peptide interactions with the membrane. These interactions have been discovered previously to trigger the reorganization of model membranes between unilamellar vesicles and planar membranes (bicelle-like structures) during the lipid phase transition. The morphology changes were taking place in rigid membranes prepared of fully saturated lipids and were proposed to play a role in the onset of amyloid related disorders.
View Article and Find Full Text PDFProteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH.
View Article and Find Full Text PDFWe used small-angle neutron scattering partially coupled with size-exclusion chromatography to unravel the solution structures of two variants of the Orange Carotenoid Protein (OCP) lacking the N-terminal extension (OCP-ΔNTE) and its complex formation with the Fluorescence Recovery Protein (FRP). The dark-adapted, orange form OCP-ΔNTE is fully photoswitchable and preferentially binds the pigment echinenone. Its complex with FRP consists of a monomeric OCP component, which closely resembles the compact structure expected for the OCP ground state, OCP.
View Article and Find Full Text PDFAbsorption of light quanta by microbial rhodopsins (or more generally by retinal proteins) leads to conversion of the light energy to the generation of transmembrane anion or cation gradients, optically gated channels, or signal states in photoreception. All these processes are accompanied by series of reaction steps with half-times ranging from femtoseconds to seconds or longer (photocycles). The number of these steps and their kinetic and spectral properties are the essential experimental information required for determination of the mechanism of light energy conversion in these proteins.
View Article and Find Full Text PDFDespite remarkable progress, mainly due to the development of LCP and 'bicelle' crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the "bicelle" crystallization matrix in the course of MP crystal growth.
View Article and Find Full Text PDFThe high-resolution crystal structure of the trimeric major light-harvesting complex of photosystem II (LHCII) is often perceived as the basis for understanding its light-harvesting and photoprotective functions. However, the LHCII solution structure and its oligomerization or aggregation state may generally differ from the crystal structure and, moreover, also depend on its functional state. In this regard, small-angle scattering experiments provide the missing link by offering structural information in aqueous solution at physiological temperatures.
View Article and Find Full Text PDFThe amyloid-beta peptide (Aβ) is considered a key factor in Alzheimer's disease (AD) ever since the discovery of the disease. The understanding of its damaging influence has however shifted recently from large fibrils observed in the inter-cellular environment to the small oligomers interacting with a cell membrane. We studied the effect of temperature on the latter interactions by evaluating the structural characteristics of zwitterionic phosphatidylcholine (PC) membranes with incorporated Aβ peptide.
View Article and Find Full Text PDFHerein, we investigated the influence of two types of nanoparticle fillers, i.e., amorphous SiO and crystalline ZrO, on the structural properties of their nanocomposites with high-density polyethylene (HDPE).
View Article and Find Full Text PDFRhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2021
We have studied the impact of cholesterol and/or melatonin on the static and dynamical properties of bilayers made of DPPC or DOPC utilizing neutron scattering techniques, Raman spectroscopy and molecular dynamics simulations. While differing in the amplitude of the effect due to cholesterol or melatonin when comparing their interactions with the two lipids, their addition ensued recognizable changes to both types of bilayers. As expected, based on the two-component systems of lipid/cholesterol or lipid/melatonin studied previously, we show the impact of cholesterol and melatonin being opposite and competitive in the case of three-component systems of lipid/cholesterol/melatonin.
View Article and Find Full Text PDFDokl Biochem Biophys
November 2020
This work provides the first characteristics of the rhodopsin SpaR from Sphingomonas paucimobilis, aerobic bacteria associated with opportunistic infections. The sequence analysis of SpaR has shown that this protein has unusual DTS motif which has never reported in rhodopsins from Proteobacteria. We report that SpaR operates as an outward proton pump at low pH; however, proton pumping is almost absent at neutral and alkaline pH.
View Article and Find Full Text PDFPhytoplankton is the base of the marine food chain as well as oxygen and carbon cycles and thus plays a global role in climate and ecology. Nucleocytoplasmic Large DNA Viruses that infect phytoplankton organisms and regulate the phytoplankton dynamics encompass genes of rhodopsins of two distinct families. Here, we present a functional and structural characterization of two proteins of viral rhodopsin group 1, OLPVR1 and VirChR1.
View Article and Find Full Text PDFIn biological membranes, lipid rafts are now thought to be transient and nanoscopic. However, the mechanism responsible for these nanoscopic assemblies remains poorly understood, even in the case of model membranes. As a result, it has proven extremely challenging to probe the physicochemical properties of lipid rafts at the molecular level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2020
Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid-lipid and lipid-protein interactions.
View Article and Find Full Text PDFTitanium-based composites-titanium and silver (TiAg) and titanium and carbon (TiC)-were synthesized by the Thermionic Vacuum Arc (TVA) method on substrates especially for gear wheels and camshaft coating as mechanical components of irrigation pumps. The films were characterized by surface morphology, microstructure, and roughness through X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Small-Angle Neutron Scattering (SANS). The silver (Ag) films crystallized into a cubic system with lattice a = 4.
View Article and Find Full Text PDFRecently, two groups of rhodopsin genes were identified in large double-stranded DNA viruses. The structure and function of viral rhodopsins are unknown. We present functional characterization and high-resolution structure of an Organic Lake Phycodnavirus rhodopsin II (OLPVRII) of group 2.
View Article and Find Full Text PDFRecent inelastic X-ray scattering (IXS) experiments on mesogens have revealed entirely new capabilities with regards to their nanoscale phonon-assisted heat management. Mesogens such as nematic liquid crystals (LCs) are appealing systems for study because their structure and morphology can easily be tuned. We report on Q-resolved ultra-high-resolution IXS, X-ray diffraction, and THz time-domain spectroscopy experiments combined with large-scale all-atom molecular dynamics simulations on the dynamic properties of 5CB LCs.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
April 2017
The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering.
View Article and Find Full Text PDF