Publications by authors named "Solorzano-Vargas R"

Introduction: Severe forms of short bowel syndrome (SBS) resulting in chronic intestinal failure (IF) have limited therapeutic options, all of which are associated with significant morbidities. Spring-mediated distraction enterogenesis (SMDE) uses an intraluminal self-expanding spring to generate mechanical force to induce intestinal stretching and sustained axial growth, providing a promising novel approach for patients with SBS. Previous studies have established this method to be safe and effective in small and large animal models.

View Article and Find Full Text PDF

Background And Aims: Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease.

View Article and Find Full Text PDF

Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption - due to a complete absence of enteroendocrine cells - followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic and, hence, may have had residual function in pancreas.

View Article and Find Full Text PDF

Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human gene on the cell cycle of BON4 cells and various human nonendocrine cell lines.

View Article and Find Full Text PDF

Cyclooxygenase 2 (Cox2) total knockout and myeloid knockout (MKO) mice develop Crohn's-like intestinal inflammation when fed cholate-containing high fat diet (CCHF). We demonstrated that CCHF impaired intestinal barrier function and increased translocation of endotoxin, initiating TLR/MyD88-dependent inflammation in Cox2 KO but not WT mice. Cox2 MKO increased pro-inflammatory mediators in LPS-activated macrophages, and in the intestinal tissue and plasma upon CCHF challenge.

View Article and Find Full Text PDF

Although critical for studies of gut motility and intestinal regeneration, the in vitro culture of intestinal muscularis with peristaltic function remains a significant challenge. Periodic contractions of intestinal muscularis result from the coordinated activity of smooth muscle cells (SMC), the enteric nervous system (ENS), and interstitial cells of Cajal (ICC). Reproducing this activity requires the preservation of all these cells in one system.

View Article and Find Full Text PDF

Background & Aims: Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation.

View Article and Find Full Text PDF

Objectives: Congenital diarrhea disorders are a group of genetically diverse and typically autosomal recessive disorders that have yet to be well characterized phenotypically or molecularly. Diagnostic assessments are generally limited to nutritional challenges and histologic evaluation, and many subjects eventually require a prolonged course of intravenous nutrition. Here we describe next-generation sequencing techniques to investigate a child with perplexing congenital malabsorptive diarrhea and other presumably unrelated clinical problems; this method provides an alternative approach to molecular diagnosis.

View Article and Find Full Text PDF

Background & Aims: Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells.

View Article and Find Full Text PDF

Background: Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity.

Methodology/principal Findings: A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied.

View Article and Find Full Text PDF

Active and passive immunotherapy targeted at the amyloid-beta (Abeta) peptide has been proposed as therapeutic approach against Alzheimer's disease (AD), and efforts towards the generation and application of antibody-based reagents that are capable of preventing and clearing amyloid aggregates are currently under active investigation. Previously, we selected and characterized a new anti-Abeta1-42 phage-displayed scFv antibody, designated clone b4.4, using a non-immune human scFv antibody library and demonstrated that a peptide based on the sequence of the Ig heavy chain (VH) complementarity-determining region (HCDR3) of this antibody fragment bound to Abeta1-42)and had neuroprotective potential against Abeta1-42 mediated neurotoxicity in rat hippocampal cultured neurons.

View Article and Find Full Text PDF

In human cells, biotin is essential to maintain metabolic homeostasis and as regulator of gene expression. The enzyme holocarboxylase synthetase (HCS) transforms biotin into its active form 5'-biotinyl-AMP and this compound is used to biotinylate five biotin-dependent carboxylases or to activate a soluble guanylate cyclase (sGC) and a cGMP-dependent protein kinase (PKG). The HCS-sGC-PKG pathway is responsible for maintaining the mRNA levels of enzymes involved in biotin utilization including HCS, carboxylases, and a biotin carrier known as sodium-dependent multivitamin transporter (SMVT).

View Article and Find Full Text PDF

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of five carboxylases in human cells, and mutations of HCS cause multiple carboxylase deficiency (MCD). Although HCS also participates in the regulation of its own mRNA levels, the relevance of this mechanism to normal metabolism or to the MCD phenotype is not known. In this study, we show that mRNA levels of enzymes involved in biotin utilization, including HCS, are down-regulated during biotin deficiency in liver while remaining constitutively expressed in brain.

View Article and Find Full Text PDF

The regulatory elements that control the transcriptional regulation of the intestinal Fc receptor (FcRn) have not been elucidated. The objective of this study was to characterize the core promoter region of the rat FcRn gene. Chimeric clones that contained various regions of the promoter located upstream of the luciferase reporter were transiently transfected into either IEC-6 or Caco-2 cell lines and nuclear extracts were used to perform DNase I footprint and DNA binding assays (EMSA).

View Article and Find Full Text PDF

Biotin, a water-soluble vitamin, is used as cofactor of enzymes involved in carboxylation reactions. In humans, there are five biotin-dependent carboxylases: propionyl-CoA carboxylase; methylcrotonyl-CoA carboxylase; pyruvate carboxylase, and two forms of acetyl-CoA carboxylase. These enzymes catalyze key reactions in gluconeogenesis, fatty acid metabolism, and amino acid catabolism; thus, biotin plays an essential role in maintaining metabolic homeostasis.

View Article and Find Full Text PDF

The polymeric Ig receptor (pIgR) is a critical component of the mucosal immune system and is expressed in largest amounts in the small intestine. In this study, we describe the initial characterization of the core promoter region of this gene. Expression of chimeric promoter-reporter constructs was supported in Caco-2 and HT-29 cells, and DNase I footprint analysis revealed a large protein complex within the core promoter region.

View Article and Find Full Text PDF

Holocarboxylase synthetase (HCS) catalyzes the covalent attachment of biotin to five biotin-dependent carboxylases in human cells. Multiple carboxylase deficiency (MCD) is a life-threatening disease characterized by the lack of carboxylase activities because of deficiency of HCS activity. Here, we report the obligatory participation of HCS in the biotin-dependent stimulation of the level of HCS mRNA and those of acetyl-CoA carboxylase and the alpha subunit of propionyl-CoA carboxylase in human cells.

View Article and Find Full Text PDF

The Na(+)-glucose cotransporter (SGLT1) is expressed primarily by small intestinal epithelial cells and transports the monosaccharides glucose and galactose across the apical membrane. Here we describe the isolation and characterization of 5.3 kb of the 5'-flanking region of the SGLT1 gene by transiently transfecting reporter constructs into a variety of epithelial cell lines.

View Article and Find Full Text PDF

The regulatory elements that control basal and activated transcriptional expression of the polymeric IgA receptor gene (pIgR) have not been defined. In this study, we performed functional analysis of the murine pIgR 5'-upstream region. Transient transfection studies identified the gene's minimal promoter to reside within 110 nucleotides upstream from the start of transcription.

View Article and Find Full Text PDF