Biochem Biophys Res Commun
December 2008
Argininosuccinate synthase (AS) is essential for endothelial nitric oxide (NO) production and its regulation in this capacity has been studied primarily at the transcriptional level. The dynamics of vascular function suggest that an acute regulation system may mediate AS function. This premise underlies our hypothesis that AS is phosphorylated in vascular endothelium.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2008
Vascular endothelial nitric oxide (NO) production via the citrulline-NO cycle not only involves the regulation of endothelial nitric oxide synthase (eNOS), but also regulation of caveolar-localized endothelial argininosuccinate synthase (AS), which catalyzes the rate-limiting step of the cycle. In the present study, we demonstrated that exposure of endothelial cells to troglitazone coordinately induced AS expression and NO production. Western blot analysis demonstrated an increase in AS protein expression.
View Article and Find Full Text PDFNitric oxide (NO) is an important vasorelaxant produced along with L-citrulline from L-arginine in a reaction catalyzed by endothelial nitric oxide synthase (eNOS). Previous studies suggested that the recycling of L-citrulline to L-arginine is essential for NO production in endothelial cells. However, there is no direct evidence demonstrating the degree to which the recycling of L-citrulline to L-arginine is coupled to NO production.
View Article and Find Full Text PDFEndothelial dysfunction associated with elevated serum levels of TNF-alpha observed in diabetes, obesity, and congenital heart disease results, in part, from the impaired production of endothelial nitric oxide (NO). Cellular NO production depends absolutely on the availability of arginine, substrate of endothelial nitric oxide synthase (eNOS). In this report, evidence is provided demonstrating that treatment with TNF-alpha (10 ng/ml) suppresses not only eNOS expression but also the availability of arginine via the coordinate suppression of argininosuccinate synthase (AS) expression in aortic endothelial cells.
View Article and Find Full Text PDFArgininosuccinate synthase (AS) catalyzes the rate-limiting step in the recycling of citrulline to arginine, which in endothelial cells, is tightly coupled to the production of nitric oxide (NO). In previous work, we established that endothelial AS mRNA can be initiated from multiple start sites, generating co-expressed mRNA variants with different 5'-untranslated regions (5'-UTRs). One of the 5'-UTRs, the shortest form, represents greater than 90% of the total AS mRNA.
View Article and Find Full Text PDFAlthough cellular levels of arginine greatly exceed the apparent K(m) for endothelial nitric-oxide synthase, current evidence suggests that the bulk of this arginine may not be available for nitric oxide (NO) production. We propose that arginine regeneration, that is the recycling of citrulline back to arginine, defines the essential source of arginine for NO production. To support this proposal, RNA interference analysis was used to selectively reduce the expression of argininosuccinate synthase (AS), because the only known metabolic role for AS in endothelial cells is in the regeneration of l-arginine from l-citrulline.
View Article and Find Full Text PDFThe enzyme endothelial nitric oxide synthase (eNOS) catalyzes the conversion of arginine, oxygen and NADPH to NO and citrulline. Previous results suggest an efficient, compartmentalized system for recycling of citrulline to arginine utilized for NO production. In support of this hypothesis, the recycling enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase (AL), have been shown to colocalize with eNOS in caveolae, a subcompartment of the plasma membrane.
View Article and Find Full Text PDFBased on the integral role that argininosuccinate synthase (AS) plays in the production of nitric oxide in vascular endothelial cells and urea in liver, an analysis was carried out to determine whether signals reside in the AS mRNA to account for tissue differences in AS function and location. Reverse transcriptase-PCR and sequence analysis showed that the AS mRNA coding region was the same for both endothelial cells and liver; however, 5'-RACE analysis (rapid amplification of cDNA ends) identified AS mRNA species in endothelial cells in addition to a major 43-nucleotide (nt) 5'-untranslated region (UTR) AS mRNA with overlapping extended 5'-UTRs of 66 and 92 nt. Comparison to the genomic sequence immediately upstream of the reported transcription start site for the human and mouse AS gene suggested that expression of all three species of bovine endothelial AS mRNA are driven by a common promoter and that 5'-UTR diversity in endothelial cells results from three transcriptional initiation sites within exon 1.
View Article and Find Full Text PDFAlthough normal intracellular levels of arginine are well above the K(m), and should be sufficient to saturate nitric oxide synthase in vascular endothelial cells, nitric oxide production can, nonetheless, be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox," has suggested the existence of a separate pool of arginine directed to nitric oxide synthesis. In this study, we demonstrate that exogenous citrulline was as effective as exogenous arginine in stimulating nitric oxide production and that citrulline in the presence of excess intracellular and extracellular arginine further enhanced bradykinin stimulated endothelial nitric oxide production.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2000
Nitric oxide (NO) production by endothelial cells in response to bradykinin (Bk) treatment was markedly and synergistically enhanced by cotreatment with sodium orthovanadate (vanadate), a phosphotyrosine phosphatase inhibitor. This enhancement was blocked by tyrosine kinase inhibitors. Calcium ionophore- (A23187) activated production of NO was also enhanced by cotreatment with vanadate.
View Article and Find Full Text PDFA water soluble truncated heme domain (a tetramer of MW = 45 kDa) of the tetrameric nitrate reductase complex from the green alga Chlorella vulgaris has been overexpressed and purified. This truncated heme domain with four identical subunits has a high redox potential (midpoint potential E1/2 = +16 mV) as compared with other heme-containing flavoproteins. We have undertaken a determination of the detailed configuration of the heme moiety in order to understand the unique electrochemical property of the heme moiety of this enzyme.
View Article and Find Full Text PDFThe active form of endothelial nitric-oxide synthase (eNOS) is a homodimer. The activity of the enzyme is regulated in vivo by calcium signaling involving the binding of calmodulin (CAM), which triggers the activation of eNOS. We have examined the possible role of calcium-mediated CAM binding in promoting dimerization of eNOS through the oxygenase domain of the enzyme.
View Article and Find Full Text PDFThe reduction of nitrate to nitrite catalyzed by nitrate reductase (NR) is considered to be the rate-limiting and regulated step of nitrate assimilation, a major metabolic pathway occurring in a wide range of organisms which in turn supply the nutritional nitrogen requirements for other forms of life. Chlorella vulgaris NR mRNA levels are very responsive to changes in nitrogen source. In the presence of ammonia as the sole nitrogen source, under repressed conditions, NR mRNA is undetectable.
View Article and Find Full Text PDFIn this study, we have investigated the release of nitric oxide from resting human platelets. Nitric oxide was detected and quantitated by either measuring the conversion of oxy-hemoglobin to met-hemoglobin or generation of nitrite and nitrate by the cells. Nitric oxide was released from both intact resting platelets and platelets activated by collagen.
View Article and Find Full Text PDFA recombinant protein corresponding to the putative heme-binding domain of assimilatory NADH:nitrate reductase from Chlorella vulgaris has been expressed and purified from transformed Escherichia coli BL21 cells. The recombinant protein, exhibited a subunit molecular mass of approximately 10 kDa with a N-terminal sequence beginning with the residues PAGA in agreement with that predicted by cDNA analysis. The UV-visible spectrum of the protein confirmed the incorporation of heme with maxima at 413 nm and 423, 528, and 557 nm for the oxidized and reduced forms, respectively.
View Article and Find Full Text PDFThe major proteinase in maize (Zea mays) roots behaves as a serine endopeptidase. A possible physiological role of this enzyme could be in the turnover of nitrate reductase (NR) and, as such, it could be of great importance in regulating the assimilation of nitrate. The objective of this research was to elucidate the specificity and uniqueness of maize root proteinase.
View Article and Find Full Text PDFAssimilatory nitrate reductase (NR) from Chlorella is homotetrameric, each subunit containing FAD, heme, and Mo-pterin in a 1:1:1 stoichiometry. Measurements of NR activity and steady-state reduction of the heme component under conditions of NADH limitation or competitive inhibition by nitrite suggested intramolecular electron transfer between heme and Mo-pterin was a rate-limiting step and provided evidence that heme is an obligate intermediate in the transfer of electrons between FAD and Mo-pterin. In addition to the physiological substrates NADH and nitrate, various redox mediators undergo reactions with one or more of the prosthetic groups.
View Article and Find Full Text PDFA partial cDNA clone coding for the haem-binding domain of NADH:nitrate reductase (EC 1.6.6.
View Article and Find Full Text PDFNitric oxide (NO) has been identified as a naturally-occurring metabolite in mammalian systems, formed from the amino acid arginine in response to a variety of physiological stimuli. It appears to function in cell-cell communication and may act either directly or through the stimulation of cyclic GMP synthesis in the regulation of such diverse functions as smooth muscle relaxation, inhibition of platelet aggregation and adhesion, central nervous system activity, and cytostasis. The significant role(s) could have important biomedical implications since perturbations in the biosynthesis, release or actions of NO could lead to hypertension, CNS dysfunction or increased susceptibility to infection.
View Article and Find Full Text PDFPotentiometric titrations of assimilatory nitrate reductase from Chlorella vulgaris were performed within the pH range 6.0-9.0.
View Article and Find Full Text PDFVisible spectra of oxidized and reduced Candida nitratophila assimilatory NAD(P)H:nitrate reductase yielded absorbance maxima of 413 nm and 423 nm, and 525 nm and 555 nm respectively, characteristic of a b5-type cytochrome. E.p.
View Article and Find Full Text PDFOxidation-reduction midpoint potentials have been determined for the flavin, cytochrome b557 and Mo-pterin prosthetic groups of spinach (Spinacia oleracea L.) assimilatory nitrate reductase using visible, c.d.
View Article and Find Full Text PDFInitial rate studies of spinach (Spinacia oleracea L.) nitrate reductase showed that NADH:nitrate reductase activity was ionic strength dependent with elevated ionic concentration resulting in inhibition. In contrast, NADH:ferricyanide reductase was markedly less ionic strength dependent.
View Article and Find Full Text PDFArch Biochem Biophys
February 1989
Nitrate reductase catalyzes the initial step in the conversion of nitrate to organic nitrogen and is thought to be repressed by ammonia and induced by nitrate. Induction by nitrate and repression by ammonia were studied by following changes in NADH:nitrate reductase and the associated partial activities NADH:cytochrome c reductase and methylviologenr:nitrate reductase. Immunoreactive protein was assessed by enzyme-linked immunosorbent assay and immunoblotting.
View Article and Find Full Text PDF