Publications by authors named "Solomon T Dibaba"

Quantum dot-sensitized solar cells (QDSSCs) represent an exciting advancement in third-generation photovoltaic solar cells owing to their ability to generate multiple electron-hole pairs per photon, high stability under light and moisture exposure, and flexibility in size and composition tuning. Although these cells have achieved power conversion efficiencies exceeding 15%, there remains a challenge in enhancing both their efficiency and stability for practical large-scale applications. Therefore, in this review, we aimed to investigate recent progress in improving the long-term stability, analyzing the impact of advanced quantum dot properties on charge-transport optimization, and assessing the role of interface engineering in reducing recombination losses to maximize QDSSC performance and stability.

View Article and Find Full Text PDF

Developing multifunctional nanocomposites for a pH-responsive controlled dual-drug delivery is still a huge challenge. Herein, we report a gentle and simple method for growing metal-organic frameworks (MOFs) that can load two anticancer drugs, namely DOX and 5-FU (doxorubicin and 5-fluorouracil), on the surface of upconversion nanoparticles (UCNPs) by the reactions of Schiff bases and electrostatic adsorption. The resulting pH-responsive UCMOFs@D@5 nanosystem showed effective dual-drug release by the cleavage of chemical bonds and the disruption of the MOF structure under acidic conditions.

View Article and Find Full Text PDF

A novel drug-delivery nanosystem based on near-infrared (NIR) light-degradable antimony nanoparticles (AMNP) have been developed for synergistic chemo-phototherapy in vitro. The monodispersed AMNP were synthesized by using a simple and cost-effective method. Positively charged doxorubicin hydrochloride (DOX) was loaded onto the negatively charged surface of AMNP via electrostatic interaction and finally modified by polyacrylic acid (PAA) to enhance biocompatibility.

View Article and Find Full Text PDF

An anti-cancer campaign might not be easily achieved through a single therapeutic modality. Collaboration of multimodal therapies and diagnosis could be vital to win the battle against cancer. In this context, we synthesized a multifunctional theranostic nanocomposite (UCNP-BPNS) from upconversion nanoparticles (UCNP) and black phosphorus nanosheets (BPNS) for synergistic photothermal/photodynamic therapies and dual modal imaging.

View Article and Find Full Text PDF