Investigating the bacterial diversity and their metabolic capabilities are crucial for interpreting ecological patterns in desert environment, and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physico-chemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrates a desert environment (Thar Desert, India) which face hot arid climate with very little rainfall and extreme temperatures.
View Article and Find Full Text PDFAcquisition of Actinobacteria, especially from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method.
View Article and Find Full Text PDFThe chromanequinone (BIQ) compound produced by the mangrove estuary derived strain, Streptomyces sp. JRG-04 was effective even at low MIC level concentration against Methicillin resistant S. aureus and other clinical pathogens.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2015
Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes.
View Article and Find Full Text PDFA moderately halotolerant Streptomyces strain, designated JAJ13 was characterized and a culture medium was statistically optimized to improve its antibacterial activity. Based on the phenotypic and molecular characteristics, strain JAJ13 was identified as a moderately halotolerant Streptomyces sp. JAJ13.
View Article and Find Full Text PDFRare actinomycete genera are accepted as a promising source of novel metabolites having pharmaceutical importance. One such genus of rare actinomycete is Nonomuraea. The present study was aimed at characterizing the antibiotic producing Nonomuraea strain JAJ18 which was previously isolated from coastal solar saltern.
View Article and Find Full Text PDFThe selection and optimization of nutritional constituents as well as their levels for the improved production of antibiotic by Nonomuraea sp. JAJ18 were carried out using combination of both nonstatistical one-factor-at-a-time (OFAT) method and statistical response surface methodology (RSM). Using OFAT method, starch and (NH4)2SO4 were identified as suitable carbon and nitrogen sources, respectively.
View Article and Find Full Text PDFDue to the emergence of severe infectious diseases and thriving antibiotic resistance, there is a need to explore microbial-derived bioactive secondary metabolites from unexplored regions. Present study deals with a mangrove estuary derived strain of Streptomyces sp. with potent antimicrobial activity against various pathogens, including methicillin resistant Staphylococcus aureus.
View Article and Find Full Text PDFThe ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India.
View Article and Find Full Text PDFStreptomyces sp. JAJ06 is a seawater-dependent antibiotic producer, previously isolated and characterised from an Indian coastal solar saltern. This paper reports replacement of seawater with a defined salt formulation in production medium and subsequent statistical media optimization to ensure consistent as well as improved antibiotic production by Streptomyces sp.
View Article and Find Full Text PDFInland solar salterns established in the vicinity of Sambhar Lake are extreme saline environments with high salinity and alkalinity. In view of the fact that microbes inhabiting such extreme saline environments flourish the contemporary bioprospecting, it was aimed to selectively isolate slow growing and rare actinomycetes from the unexplored solar salterns. A total of 14 slow growing actinomycetes were selectively isolated from three composite soil samples of inland solar salterns.
View Article and Find Full Text PDFBackground: Hypersaline solar salterns are extreme environments in many tropical and subtropical regions throughout the world. In India, there are several coastal solar salterns along with the coastal line of the Bay of Bengal and Arabian Sea and inland solar salterns around Sambhar saltlake, from which sodium chloride is obtained for human consumption and industrial needs. Studies on characterization of such coastal and inland solar salterns are scarce and both the bacterial and archaeal diversity of these extreme saline environment remains poorly understood.
View Article and Find Full Text PDFA Gram-positive, moderately halophilic Streptomyces strain, designated JAJ06, was isolated from saltpan soil collected at Tuticorin, India, and subjected to a polyphasic characterization with an insight into their biotechnological importance. Growth characteristics and antimicrobial com-pound producing capabilities of Streptomyces sp. JAJ06 were observed on various International Streptomyces Project (ISP) media and production media.
View Article and Find Full Text PDFThe phylogeny of members of Streptomyces bacteria isolated from mangrove sediments in the Manakudi estuary near the Arabian Sea, India, was analyzed in the present study. Among the 35 different isolates, five organisms, JS-9, JS-11, JS-12, JS-13 and JS-20, exhibited potent antimicrobial effects against methicillin-resistant Staphylococcus aureus (clinical isolate) and methicillin-susceptible S. aureus MTCC 3160 and Salmonella typhi MTCC 733; all other isolates displayed intermediate antimicrobial effects.
View Article and Find Full Text PDF