Publications by authors named "Solomon I Woods"

High-crystal-quality nanoferrites with short surface ligands (oleic acid) were recently shown to exhibit enhanced sensitivity and spatial resolution, likely due to chain formation (uniaxial assemblies of particles) for magnetic particle imaging (MPI). Here, we develop a simple one-pot thermal decomposition approach to produce ferrite (iron oxide) magnetic nano-objects (MNOs) that strongly interact magnetically and have good synthetic reproducibility. The ferrite MNOs were physically characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and dynamic light scattering.

View Article and Find Full Text PDF

. Image reconstruction is a fundamental step in magnetic particle imaging (MPI). One of the main challenges is the fact that the reconstructions are computationally intensive and time-consuming, so choosing an algorithm presents a compromise between accuracy and execution time, which depends on the application.

View Article and Find Full Text PDF

Advances in instrumentation and tracer materials are still required to enable sensitive, accurate, and localized in situ 3D temperature monitoring by magnetic particle imaging (MPI). We have developed a high-resolution magnetic particle imaging instrument and implemented a low-noise multi-harmonic lock-in detection method to observe and quantify temperature variations in iron oxide nanoparticle tracers using the harmonic ratio method for determining temperature. Using isolated harmonics for MPI and temperature imaging revealed an apparent dependence of imaging resolution on harmonic number.

View Article and Find Full Text PDF

Temperature is a fundamental physical quantity important to the physical and biological sciences. Measurement of temperature within an optically inaccessible three-dimensional (3D) volume at microscale resolution is currently limited. Thermal magnetic particle imaging (T-MPI), a temperature variant of magnetic particle imaging (MPI), hopes to solve this deficiency.

View Article and Find Full Text PDF

Characterization of the magnetization dynamics of single-domain magnetic nanoparticles (MNPs) is important for magnetic particle imaging (MPI), magnetic resonance imaging (MRI), and emerging medical diagnostic/therapeutic technologies. Depending on particle size and temperature, nanoparticle magnetization relaxation time constants span from nanoseconds to seconds. In solution, relaxation occurs via coupled Brownian and Néel relaxation mechanisms.

View Article and Find Full Text PDF

We have constructed, calibrated, and tested a cryogenic low-background infrared radiometer for both spectral radiance and irradiance measurements over the 4 μm to 20 μm wavelength range. The primary purpose of the Missile Defense Transfer Radiometer (MDXR) is to measure absolute irradiance or radiance from cryogenic infrared test chamber sources using a photoconductive Si:As Blocked Impurity Band (BIB) detector and a set of spectral filters. The MDXR also includes an absolute cryogenic radiometer (ACR) and a Fourier transform spectrometer (FTS).

View Article and Find Full Text PDF

Magnetic nanoparticle (MNP) thermometry based on magnetic particle spectroscopy (MPS) is explored as a potential approach for realizing in-situ temperature measurement of 3D objects. MNP thermometry relies on the nonlinear magnetization response to an AC drive field. This nonlinear response has functional dependence on frequency and temperature, governed by the complex magnetization dynamics of MNPs suspended in solution.

View Article and Find Full Text PDF