In mammals, centromeres are epigenetically specified by the histone H3 variant CENP-A and are typically associated with satellite DNA. We previously described the first example of a natural satellite-free centromere on chromosome 11 (ECA11) and, subsequently, on several chromosomes in other species of the genus . We discovered that these satellite-free neocentromeres arose recently during evolution through centromere repositioning and/or chromosomal fusion, after inactivation of the ancestral centromere, where, in many cases, blocks of satellite sequences were maintained.
View Article and Find Full Text PDFCentromeres are epigenetically specified by the histone H3 variant CENP-A and typically associated with highly repetitive satellite DNA. We previously discovered natural satellite-free neocentromeres in Equus caballus and Equus asinus. Here, through ChIP-seq with an anti-CENP-A antibody, we found an extraordinarily high number of centromeres lacking satellite DNA in the zebras Equus burchelli (15 of 22) and Equus grevyi (13 of 23), demonstrating that the absence of satellite DNA at the majority of centromeres is compatible with genome stability and species survival and challenging the role of satellite DNA in centromere function.
View Article and Find Full Text PDFThe centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci.
View Article and Find Full Text PDFInterstitial telomeric sequences (ITSs) are stretches of telomeric-like repeats located at internal chromosomal sites. We previously demonstrated that ITSs have been inserted during the repair of DNA double-strand breaks in the course of evolution and that some rodent ITSs, called TERC-ITSs, are flanked by fragments retrotranscribed from the telomerase RNA component (TERC). In this work, we carried out an extensive search of TERC-ITSs in 30 vertebrate genomes and identified 41 such loci in 22 species, including in humans and other primates.
View Article and Find Full Text PDFInterstitial telomeric sequences (ITSs) are short stretches of telomeric-like repeats (TTAGGG)n at nonterminal chromosomal sites. We previously demonstrated that, in the genomes of primates and rodents, ITSs were inserted during the repair of DNA double-strand breaks. These conclusions were derived from sequence comparisons of ITS-containing loci and ITS-less orthologous loci in different species.
View Article and Find Full Text PDFCentromeres exert an inhibitory effect on meiotic recombination, but the possible contribution of satellite DNA to this "centromere effect" is under debate. In the horse, satellite DNA is present at all centromeres with the exception of the one from chromosome 11. This organization of centromeres allowed us to investigate the role of satellite DNA on recombination suppression in horse spermatocytes at the stage of pachytene.
View Article and Find Full Text PDFThe typical vertebrate centromeres contain long stretches of highly repeated DNA sequences (satellite DNA). We previously demonstrated that the karyotypes of the species belonging to the genus are characterized by the presence of satellite-free and satellite-based centromeres and represent a unique biological model for the study of centromere organization and behavior. Using horse primary fibroblasts cultured in vitro, we compared the segregation fidelity of chromosome 11, whose centromere is satellite-free, with that of chromosome 13, which has similar size and a centromere containing long stretches of satellite DNA.
View Article and Find Full Text PDFMammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Chromosome 11.
View Article and Find Full Text PDFTelomeres are transcribed into noncoding telomeric repeat-containing RNAs (TERRA), which are essential for telomere maintenance. Deregulation of TERRA transcription impairs telomere metabolism and a role in tumorigenesis has been proposed. Head and neck cancer (HNC) is one of the most frequent cancers worldwide, with head and neck squamous cell carcinoma (HNSCC) being the predominant type.
View Article and Find Full Text PDFIndividuals differ in realized fitness but the genetic/phenotypic traits that underpin such variation are often unknown. Telomere dynamics may be a major source of variation in fitness traits because physiological telomere shortening depends on environmental and genetic factors and may impair individual performance. Here, we showed that, in a population of a socially monogamous, biparental passerine bird, the barn swallow (Hirundo rustica), breeding in northern Italy, telomere length (TL) of both adult males and females positively correlated with seasonal reproductive and fledging success, as expected because long telomeres are supposed to boost performance.
View Article and Find Full Text PDFOxidative stress experienced during early development can negatively affect diverse life-history traits, and organisms have evolved complex defence systems against its detrimental effects. Bird eggs contain maternally derived exogenous antioxidants that play a major role in embryo protection from oxidative damage, including the negative effects on telomere dynamics. In this study on the yellow-legged gull (), we manipulated the concentration of vitamin E (VE) in the egg yolk and analysed the consequences on oxidative status markers and telomere length in the hatchlings.
View Article and Find Full Text PDFBackground: The centromere is the specialized locus required for correct chromosome segregation during cell division. The DNA of most eukaryotic centromeres is composed of extended arrays of tandem repeats (satellite DNA). In the horse, we previously showed that, although the centromere of chromosome 11 is completely devoid of tandem repeat arrays, all other centromeres are characterized by the presence of satellite DNA.
View Article and Find Full Text PDFTelomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant.
View Article and Find Full Text PDFThe centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA.
View Article and Find Full Text PDFCentromeres are the sites of kinetochore assembly and spindle fiber attachment and consist of protein-DNA complexes in which the DNA component is typically characterized by the presence of extended arrays of tandem repeats called satellite DNA. Here, we describe the isolation and characterization of a 137-bp-long new satellite DNA sequence from the horse genome (EC137), which is also present, even if less abundant, in the domestic donkey, the Grevy's zebra and the Burchelli's zebra. We investigated the chromosomal distribution of the EC137 sequence in these 4 species.
View Article and Find Full Text PDFMammalian telomeres are transcribed into long non-coding telomeric repeat-containing RNA (TERRA) molecules that seem to play a role in the maintenance of telomere stability. In human cells, CpG-island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length.
View Article and Find Full Text PDFMany human primary somatic cells can be immortalized by inducing telomerase activity through the exogenous expression of the human telomerase catalytic subunit (hTERT). This approach has been extended to the immortalization of cell lines from several mammals. Here, we show that hTERT expression is not sufficient to immortalize primary fibroblasts from three equid species, namely donkey, Burchelli's zebra and Grevy's zebra.
View Article and Find Full Text PDFArchaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas.
View Article and Find Full Text PDFWe mapped six genes (EIF4G3, HSP90, RBBP6, IL8, TERT, and TERC) on the chromosomes of Equus caballus, Equus asinus, Equus grevyi, and Equus burchelli by fluorescence in situ hybridization. Our results add six type I markers to the cytogenetic map of these species and provide new information on the comparative genomics of the genus Equus.
View Article and Find Full Text PDFIn the karyotype of Equus asinus (domestic donkey, 2n = 62), non-centromeric heterochromatic bands have been described in subcentromeric and telomeric positions. In particular, chromosome 1 is characterised by heterochromatic bands in the proximal region of the long arm and in the short arm; it has been shown that these regions are polymorphic in size. Here we investigated the variation in the intensity and distribution of fluorescence signals observed on donkey chromosome 1 after in situ hybridization with two DNA probes containing fragments from the two major equine satellite DNA families.
View Article and Find Full Text PDFBackground: In mammalian cells gene amplification is a common manifestation of genome instability promoted by DNA double-strand breaks (DSBs). The repair of DSBs mainly occurs through two mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). We previously showed that defects in the repair of DSBs via NHEJ could increase the frequency of gene amplification.
View Article and Find Full Text PDF