Forward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution by comparing with the directly measured 'gold standard'.
View Article and Find Full Text PDFBackground: Implantable cardioverter-defibrillators (ICDs) are effective for primary and secondary prevention of sudden cardiac death due to ventricular arrhythmias. However, despite wide clinical use, there are no generally accepted standardized protocols to characterize and report the output capabilities of ICDs.
Objective: The objective of this study was to measure and compare the output characteristics of standard-output and high-output ICDs from several manufacturers under a common set of conditions.
The goal of this study is to assess the predictive capacity of computational models of transvenous defibrillation by comparing the results of patient-specific simulations to clinical defibrillation thresholds (DFT). Nine patient-specific models of the thorax and in situ electrodes were created from segmented CT images taken after implantation of the cardioverter-defibrillator. The defibrillation field distribution was computed using the finite volume method.
View Article and Find Full Text PDFConventional transvenous defibrillation is performed with an ICD using a dual current pathway. The defibrillation energy is delivered from the RV electrode to the superior vena cava (SVC) electrode and the metallic case (CAN) of the ICD. Biventricular defibrillation uses an additional electrode placed in the LV free wall with sequential shocks to create an additional current vector.
View Article and Find Full Text PDFWe tested the hypothesis that cardiomyocytes maintained their phenotype better if cultured as three-dimensional tissue constructs than if cultured as confluent monolayers. Neonatal rat cardiomyocytes were cultured on biomaterial scaffolds in rotating bioreactors for 1 week, and resulting tissue constructs were compared with confluent monolayers and slices of native ventricular tissue with respect to proteins involved in cell metabolism (creatine kinase isoform MM), contractile function (sarcomeric myosin heavy chain), and intercellular communication (connexin 43), as well as action potential characteristics (e.g.
View Article and Find Full Text PDFThe local mechanical environment is a crucial factor in determining cell and tissue differentiation during vertebrate skeletal development and repair. Unlike the basic response of bone to mechanical load, as described in Wolff's law, the mechanobiological relationship between the local mechanical environment and tissue differentiation influences everything from tissue type and molecular architecture to the formation of complex joints. This study tests the hypothesis that precisely controlled mechanical loading can regulate gene expression, tissue differentiation and tissue architecture in the adult skeleton and that precise manipulation of the defect's local mechanical environment can initiate a limited recapitulation of joint tissue development.
View Article and Find Full Text PDFBone regeneration during fracture healing has been demonstrated repeatedly, yet the regeneration of articular cartilage and joints has not yet been achieved. It has been recognized however that the mechanical environment during fracture healing can be correlated to the contributions of either the endochondral or intramembranous processes of bone formation, and to resultant tissue architecture. Using this information, the goal of this study was to test the hypothesis that induced motion can directly regulate osteogenic and chondrogenic tissue formation in a rat mid-femoral bone defect and thereby influence the anatomical result.
View Article and Find Full Text PDF