Recently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g.
View Article and Find Full Text PDFTwo-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges.
View Article and Find Full Text PDFDroplets on nanotextured oil-impregnated surfaces have high mobility due to record-low contact angle hysteresis (∼1-3°), attributed to the absence of solid-liquid contact. Past studies have utilized the ultralow droplet adhesion on these surfaces to improve condensation, reduce hydrodynamic drag, and inhibit biofouling. Despite their promising utility, oil-impregnated surfaces are not fully embraced by industry because of the concern for lubricant depletion, the source of which has not been adequately studied.
View Article and Find Full Text PDFDroplets residing on textured oil-impregnated surfaces form a wetting ridge due to the imbalance of interfacial forces at the contact line, leading to a wealth of phenomena not seen on traditional lotus-leaf-inspired non-wetting surfaces. Here, we show that the wetting ridge leads to long-range attraction between millimeter-sized droplets, which coalesce in three distinct stages: droplet attraction, lubricant draining, and droplet merging. Our experiments and model show that the magnitude of the velocity and acceleration at which droplets approach each other horizontally is the same as the vertical oil rise velocity and acceleration in the wetting ridge.
View Article and Find Full Text PDFLiquid-liquid heat exchangers that operate in marine environments are susceptible to biofouling, which decreases the overall heat exchange between hot and cold liquids by increasing the conduction resistance. Recently, micro/nanostructured oil-impregnated surfaces have been shown to significantly reduce biofouling. However, their potential as a heat exchanger material has not been studied.
View Article and Find Full Text PDFHarvesting largely ignored and wasted electromagnetic (EM) energy released by electronic devices and converting it into direct current (DC) electricity is an attractive strategy not only to reduce EM pollution but also address the ever-increasing energy crisis. Here we report the synthesis of nanoparticle-templated graphene with monodisperse and staggered circular nanopores enabling an EM-heat-DC conversion pathway. We experimentally and theoretically demonstrate that this staggered nanoporous structure alters graphene's electronic and phononic properties by synergistically manipulating its intralayer nanostructures and interlayer interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Due to its multifaceted impact in various applications, icing and ice dendrite growth has been the focus of numerous studies in the past. Dendrites on wetting (hydrophilic) and nonwetting (hydrophobic) surfaces are sharp, pointy, branching, and hairy. Here, we show a unique dendrite morphology on state-of-the-art micro/nanostructured oil-impregnated surfaces, which are commonly referred to as slippery liquid-infused porous surfaces or liquid-infused surfaces.
View Article and Find Full Text PDFVarious forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g.
View Article and Find Full Text PDFBiomimetic artificial surfaces that enable the manipulation of gas bubble mobility have been explored in a wide range of applications in nanomaterial synthesis, surface defouling, biomedical diagnostics, and therapeutics. Although many superhydrophobic surfaces and isotropic-lubricant-infused porous surfaces have been developed to manipulate gas bubbles, the simultaneous control over the adhesion and transport of gas bubbles underwater remains a challenge. Thermotropic liquid crystals (LCs), a class of structured fluids, provide an opportunity to tune the behavior of gas bubbles through LC mesophase transitions using a variety of external stimuli.
View Article and Find Full Text PDFAlthough advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives, the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic (EM) radiation. Up to date, extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials. However, the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge.
View Article and Find Full Text PDFThe ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs).
View Article and Find Full Text PDFPhase-change condensation is commonplace in nature and industry. Since the 1930s, it is well understood that vapor condenses in filmwise mode on clean metallic surfaces whereas it condenses by forming discrete droplets on surfaces coated with a promoter material. In both filmwise and dropwise modes, the condensate is removed when gravity overcomes pinning forces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
Porous lubricated surfaces (aka slippery liquid-infused porous surfaces, SLIPS) have been demonstrated to repel various liquids. The origin of this repellency, however, is not fully understood. By using surface-sensitive sum frequency generation vibrational spectroscopy, we characterized the water/oil interface of a water droplet residing on (a) an oil-impregnated nanostructured surface (SLIPS) and (b) the same oil layer without the underlying nanostructures.
View Article and Find Full Text PDFDue to recent advances in nanofabrication, phase-change condensation heat transfer has seen a renaissance. Compared to conventional heat transfer surfaces, nanostructured surfaces impregnated with chemically matched lubrication films (hereinafter referred to as "nanostructured lubricated surfaces") have been demonstrated to improve vapor-side phase-change condensation heat transfer by facilitating droplet nucleation, growth, and departure. While the presence of nanoscale roughness improves performance longevity by stabilizing the lubrication film capillary forces, such enhancement is short-lived due to the eventual loss of lubrication oil by the departing droplets.
View Article and Find Full Text PDFCapillary assisted passively pumped thermal management devices have gained importance due to their simple design and reduction in energy consumption. The performance of these devices is strongly dependent on the shape of the curved interface between the liquid and vapor phases. We developed a transient laser interferometry technique to investigate the evolution of the shape of the liquid-vapor interface in micropillar arrays during evaporation heat transfer.
View Article and Find Full Text PDFUnderstanding liquid dynamics on surfaces can provide insight into nature's design and enable fine manipulation capability in biological, manufacturing, microfluidic and thermal management applications. Of particular interest is the ability to control the shape of the droplet contact area on the surface, which is typically circular on a smooth homogeneous surface. Here, we show the ability to tailor various droplet contact area shapes ranging from squares, rectangles, hexagons, octagons, to dodecagons via the design of the structure or chemical heterogeneity on the surface.
View Article and Find Full Text PDFControlling wettability by varying surface chemistry and roughness or by applying external stimuli is of interest for a wide range of applications including microfluidics, drag reduction, self-cleaning, water harvesting, anti-corrosion, anti-fogging, anti-icing and thermal management. It has been well known that droplets on textured hydrophilic, that is superhydrophilic, surfaces form thin films with near-zero contact angles. Here we report an unexpected behaviour where non-wetting droplets are formed by slightly heating superhydrophilic microstructured surfaces beyond the saturation temperature (>5 °C).
View Article and Find Full Text PDFUnderstanding the complexities associated with contact line dynamics on chemically heterogeneous and superhydrophobic surfaces is important for a wide variety of engineering problems. Despite significant efforts to capture the behavior of a droplet on these surfaces over the past few decades, modeling of the complex dynamics at the three-phase contact line is needed. In this work, we demonstrate that contact line distortion on heterogeneous and superhydrophobic surfaces is the key aspect that needs to be accounted for in the dynamic droplet models.
View Article and Find Full Text PDF