Adventitious root (AR) culture of Atractylodes chinensis is an efficient platform for sustainable production of its sesquiterpenoid compounds (atractylon and β-eudesmol). However, their limited accumulation levels need an effective elicitation approach, and the present study solved this problem using methyl jasmonate (MeJA) as an elicitor. The effects of its treatment concentration and duration on metabolite production were investigated.
View Article and Find Full Text PDFIt is of great importance to better understand how trees regulate nitrogen (N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here, we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P.
View Article and Find Full Text PDFFor Res (Fayettev)
May 2022
With the advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) system, plant genome editing has entered a new era of robust and precise editing for any genes of interest. The development of various CRISPR/Cas toolkits has enabled new genome editing outcomes that not only target indel mutations but also enable base editing and prime editing. The application of the CRISPR/Cas toolkits has rapidly advanced breeding and crop improvement of economically important species.
View Article and Find Full Text PDFAdventitious rooting is an essential biological process in the vegetative propagation of economically important horticultural and forest tree species. It enables utilization of the elite genotypes in breeding programmes and production. Promotion of adventitious root (AR) formation has been associated with starvation of inorganic phosphate and some factors involved in low phosphorus (LP) signalling.
View Article and Find Full Text PDFSince the roots are the very organ where plants first sense and respond drought stress, it is of great importance to better understand root responses to drought. Yet the underlying molecular mechanisms governing root responses to drought stress have been poorly understood. Here, we identified and functionally characterized a CCCH type transcription factor, PuC3H35, and its targets, anthocyanin reductase (PuANR) and early Arabidopsis aluminum induced1 (PuEARLI1), which are involved in mediating proanthocyanidin (PA) and lignin biosynthesis in response to drought stress in Populus ussuriensis root.
View Article and Find Full Text PDF