Publications by authors named "Sollner-Webb B"

An increasingly common method for predicting gene activity is genome-wide chromatin immuno-precipitation of 'active' chromatin modifications followed by massively parallel sequencing (ChIP-seq). In order to understand better the relationship between developmentally regulated chromatin landscapes and regulation of early B cell development, we determined how differentially active promoter regions were able to predict relative RNA and protein levels at the pre-pro-B and pro-B stages. Herein, we describe a novel ChIP-seq quantification method (cRPKM) to identify active promoters and a multi-omics approach that compares promoter chromatin status with ongoing active transcription (GRO-seq), steady state mRNA (RNA-seq), inferred mRNA stability, and relative proteome abundance measurements (iTRAQ).

View Article and Find Full Text PDF

Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range.

View Article and Find Full Text PDF

RNA editing in Trypanosoma brucei is posttranscriptional uridylate removal/addition, generally at vast numbers of pre-mRNA sites, but to date, only single editing cycles have been examined in vitro. We here demonstrate achieving sequential cycles of U deletion in vitro, with editing products confirmed by sequence analysis. Notably, the subsequent editing cycle is much more efficient and occurs far more rapidly than single editing cycles; plus, it has different recognition requirements.

View Article and Find Full Text PDF

In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations.

View Article and Find Full Text PDF

Trypanosome RNA editing is massive post-transcriptional U-insertion and U-deletion, which generates mature mRNA coding regions through cycles of endonuclease, terminal U transferase (TUTase) or 3'-U-exo, and ligase action. Both types of editing are thought to be catalyzed by distinct sets of proteins of a multiprotein complex, and no enzymatic activity of wild-type editing complex had been shown to function in both forms of editing. By examining the individual steps of the U-deletion cycle using purified editing complex, traditional mitochondrial extract, and rapidly prepared cell lysate, we here demonstrate that TbMP57 TUTase of U-insertion can act efficiently within a U-deletion cycle.

View Article and Find Full Text PDF

Trypanosome RNA editing is the posttranscriptional insertion and deletion of uridylate (U) residues, often to a massive extent, through cycles of cleavage, U addition or U removal, and ligation. These editing cycles are catalyzed by a complex that we purified to seven major proteins (bands I through VII). Here we analyze the role of band II using extracts of clonal band II RNA interference (RNAi) cell lines prepared by a rapid protocol that enables retention of activities that are lost during traditional extract preparation.

View Article and Find Full Text PDF

Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins.

View Article and Find Full Text PDF

Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII.

View Article and Find Full Text PDF

Trypanosome RNA editing, the posttranscriptional insertion and deletion of U residues in mitochondrial transcripts, is catalyzed by a protein complex containing seven distinct proteins. In this study, we cloned the gene for band III, a 555-amino-acid protein with two separate zinc finger motifs. We prepared antibodies that showed band III protein cofractionates with the previously characterized band IV protein throughout the purification of the editing complex and is not found free or in other protein associations; therefore, it is a true constituent of the editing complex.

View Article and Find Full Text PDF

Trypanosome RNA editing utilizes a seven polypeptide complex that includes two RNA ligases, band IV and band V. We now find that band IV protein contributes to the structural stability of the editing complex, so its lethal genetic knock-out could reflect structural or catalytic requirements. To assess the catalytic role in editing, we generated cell lines which inducibly replaced band IV protein with an enzymatically inactive but structurally conserved version.

View Article and Find Full Text PDF

Kinetoplastid RNA editing is a posttranscriptional insertion and deletion of U residues in mitochondrial transcripts that involves RNA ligase. A complex of seven different polypeptides purified from Trypanosoma brucei mitochondria that catalyzes accurate RNA editing contains RNA ligases of approximately 57 kDa (band IV) and approximately 50 kDa (band V). From a partial amino acid sequence, cDNA and genomic clones of band IV were isolated, making it the first cloned component of the minimal RNA editing complex.

View Article and Find Full Text PDF

Trypanosome RNA editing is a massive processing of mRNA by U deletion and U insertion, directed by trans-acting guide RNAs (gRNAs). A U deletion cycle and a U insertion cycle have been reproduced in vitro using synthetic ATPase (A6) pre-mRNA and gRNA. Here we examine which gRNA features are important for this U deletion.

View Article and Find Full Text PDF

RNA editing, the processing that generates functional mRNAs in trypanosome mitochondria, involves cycles of protein catalyzed reactions that specifically insert or delete U residues. We recently reported purification from Trypanosoma brucei mitochondria of a complex showing seven major polypeptides which exhibits the enzymatic activities inferred in editing and that a pool of fractions of the complex catalyzed U deletion, the minor form of RNA editing in vivo . We now show that U insertion activity, the major form of RNA editing in vivo , chromatographically co-purifies with both U deletion activity and the protein complex.

View Article and Find Full Text PDF

In the currently envisioned mechanism of trypanosome mitochondrial RNA editing, U-insertion and U-deletion cycles begin with a common kind of gRNA-directed cleavage. However, natural, altered, and mutationally interconverted editing sites reveal that U-deletional cleavage is inefficient without and activated by ATP and ADP, while U-insertional cleavage shows completely reverse nucleotide effects. The adenosine nucleotides' effects appear to be allosteric and determined solely by sequences immediately adjacent to the anchor duplex.

View Article and Find Full Text PDF

It has been widely believed that the electrophoretic migration difference of otherwise identical RNAs with a P versus OH terminus would be the same as occurs for DNA, a fairly reproducible approximately 1/2 nucleotide (nt) offset. RNA with a 5'-OH indeed migrates View Article and Find Full Text PDF

Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activities predicted to catalyze RNA editing: gRNA-directed endonuclease, terminal uridylyl transferase, 3' U-specific exonuclease, and RNA ligase.

View Article and Find Full Text PDF

From Trypanosoma brucei, we identified ST-2, a protein complex that interacts with telomeric DNA and exhibits novel features. It binds specifically to the double-stranded telomere repeats (TTAGGG) and more tightly to the subtelomere 29-base pair elements that separate the telomere repeats from their proximal telomere-associated sequences. Interestingly, ST-2 showed still greater affinity for the G-rich strand of the telomere present either as an overhang or in a single-stranded form, but it exhibited the highest affinity for the G-rich strand of the subtelomere repeats.

View Article and Find Full Text PDF

We have examined the cytological localization of rRNA synthesis, transport, and processing events within the mammalian cell nucleolus by double-label fluorescent in situ hybridization analysis using probes for small selected segments of pre-rRNA, which have known half-lives. In particular, a probe for an extremely short-lived 5' region that is not found separate of the pre-rRNA identifies nascent transcripts within the nucleolus of an intact active cell, while other characterized probes identify molecules at different stages in the rRNA processing pathway. Through these studies, visualized by confocal and normal light microscopy, we (1) confirm that rDNA transcription occurs in small foci within nucleoli, (2) show that the nascent pre-rRNA transcripts and most likely also the rDNA templates are surprisingly extended in the nucleolus, (3) provide evidence that the 5' end of the nascent rRNA transcript moves more rapidly away from the template DNA than does the 3' end of the newly released transcript, and (4) demonstrate that the various subsequent rRNA processing steps occur sequentially further from the transcription site, with each early processing event taking place in a distinct nucleolar subdomain.

View Article and Find Full Text PDF

RNA editing in kinetoplastids, the specific insertion and deletion of U residues, requires endonuclease cleavage of the pre-mRNA at each cycle of insertion/deletion. We have resolved three endoribonuclease activities from Trypanosoma brucei mitochondrial extracts that cleave CYb pre-mRNA specifically. One of these, which sediments at approximately 20S and is not affected substantially by DTT, has all the features of the editing endonuclease.

View Article and Find Full Text PDF

The nucleolus, the compartment in which the large ribosomal RNA precursor (pre-rRNA) is synthesized, processed through a series of nucleolytic cleavages and modifications into the mature 18S, 5.8S, and 28S rRNAs, and assembled with proteins to form ribosomal subunits, also contains many small nucleolar RNAs (snoRNAs). We present evidence that the first processing event in mouse rRNA maturation, cleavage within the 5' external transcribed spacer, is facilitated by at least four snoRNAs: U14, U17(E1), and E3, as well as U3.

View Article and Find Full Text PDF

The promoter-distal half of the spacer separating the tandem Xenopus laevis rRNA genes consists of "0" and "1" repetitive elements that have been considered unimportant in polymerase I transcriptional activation. Utilizing oocyte microinjection, we now demonstrate that the 0/1 region, as well as its component 0 and 1 repeats, substantially stimulate transcription from a ribosomal promoter in cis and inhibit transcription when located in trans. Both the cis and trans responses increase linearly with increasing numbers of 0 or 1 repeats until saturation is approached.

View Article and Find Full Text PDF

We have studied the mechanism of accurate in vitro RNA editing of Trypanosoma brucei ATPase 6 mRNA, using four mRNA-guide RNA (gRNA) pairs that specify deletion of 2, 3, or 4 U residues at editing site 1 and mitochondrial extract. This extract not only catalyzes deletion of the specified number of U residues but also exhibits a novel endonuclease activity that cleaves the input pre-mRNA in a gRNA-directed manner, precisely at the phosphodiester bond predicted in a simple enzymatic model of RNA editing. This cleavage site is inconsistent with a chimera-based editing mechanism.

View Article and Find Full Text PDF