A series of 3-aryl(()-3-fluoropyrrolidin-1-yl)butanoic acids were developed as potent orally bioavailable αβ integrin inhibitors. Starting from a zwitterionic peptidomimetic series optimized for inhaled administration, the balancing of potency and passive permeability to achieve suitable oral agents through modification and exploration of aryl substituents and p of the central cyclic amine is described. ()-4-(()-3-Fluoro-3-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)pyrrolidin-1-yl)-3-(3-(2-methoxyethoxy)phenyl)butanoic acid was found to have highly desirable oral pharmacokinetic profiles in rat, dog, and minipig, with low to moderate clearance (26%, 7%, and 18% liver blood flow, respectively), moderate volumes of distribution (3.
View Article and Find Full Text PDFA highly enantioselective organocatalytic aza-Michael addition of 4-nitro-pyrazole to ethyl ()-2,2-difluoro-5-oxopent-3-enoate has been developed. This reaction enabled a concise, four-step, stereoselective synthesis of highly functionalized 3,3-difluoro-4-pyrazolo-piperidine GSK3901383A, a key intermediate for the synthesis of a leucine-rich repeat kinase 2 inhibitor API. Computational analysis provided insight into the steric requirements of the catalytic system, enabling rational selection of a highly selective catalyst.
View Article and Find Full Text PDFA series of 3-aryl(pyrrolidin-1-yl)butanoic acids were synthesized using a diastereoselective route, via a rhodium catalyzed asymmetric 1,4-addition of arylboronic acids in the presence of ( R)-BINAP to a crotonate ester to provide the ( S) absolute configuration for the major product. A variety of aryl substituents including morpholine, pyrazole, triazole, imidazole, and cyclic ether were screened in cell adhesion assays for affinity against αβ, αβ, αβ, αβ, and αβ integrins. Numerous analogs with high affinity and selectivity for the αβ integrin were identified.
View Article and Find Full Text PDFA series of indazole arylsulfonamides were synthesized and examined as human CCR4 antagonists. Methoxy- or hydroxyl-containing groups were the more potent indazole C4 substituents. Only small groups were tolerated at C5, C6, or C7, with the C6 analogues being preferred.
View Article and Find Full Text PDF5-Aza, 6-aza, 7-aza and 8-aza-phthalazinone, and 5,8-diazaphthalazinone templates were synthesised by stereoselective routes starting from the appropriate pyridine/pyrazine dicarboxylic acids by activation with CDI, reaction with 4-chlorophenyl acetate ester enolate to give a β-ketoester, which was hydrolysed, and decarboxylated. The resulting ketone was condensed with hydrazine to form the azaphthalazinone core. The azaphthalazinone cores were alkylated with N-Boc-D-prolinol at N-2 by Mitsunobu reaction, de-protected, and then alkylated at the pyrrolidine nitrogen to provide the target H(1) receptor antagonists.
View Article and Find Full Text PDFA six-stage stereoselective synthesis of indanyl-7-(3'-pyridyl)-(3R,6R,7R)-2,5-diketopiperazines oxytocin antagonists from indene is described. SAR studies involving mono- and disubstitution in the 3'-pyridyl ring and variation of the 3-isobutyl group gave potent compounds (pK(i) > 9.0) with good aqueous solubility.
View Article and Find Full Text PDFTriphenylphosphine tagged with a short poly-(ethyleneglycol)-ω-monomethyl ether chain (light MPEG, 10−16 ethylenoxy units, (M)TPP-G2) and an MPEG-tagged version of diethyl azodicarboxylate ((M)DEAD) have been used to prepare a 20 member library of esters, ethers, and sulfonamides, with cLogP's in the range of 1.4−5.7 on a 0.
View Article and Find Full Text PDFA series of potent phthalazinone-based human H(1) and H(3) bivalent histamine receptor antagonists, suitable for intranasal administration for the potential treatment of allergic rhinitis, were identified. Blockade of H(3) receptors is thought to improve efficacy on nasal congestion, a symptom of allergic rhinitis that is currently not treated by current antihistamines. Two analogues (56a and 56b) had slightly lower H(1) potency (pA(2) 9.
View Article and Find Full Text PDFA toolkit of low molecular weight MPEG-supported coupling agents ((M)IIDQ, (M)EDCI), reagents for the Mitsunobu reaction ((M)DEAD, (M)TPP), an alternative to diazomethane, and scavengers can be used in the solution-phase synthesis of amides, esters and ureas and are easily removed after use by solid-phase extraction (MSPE) using normal silica.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2008
Optimisation of a series of oxazole diketopiperazines has led to the discovery of a very potent and selective oxytocin antagonist GSK221149A. GSK221149A has been shown to inhibit oxytocin-induced uterine contractions in the anaesthetised rat.
View Article and Find Full Text PDFA short, efficient, and highly stereoselective synthesis of a series of (3R,6R,7R)-2,5-diketopiperazine oxytocin antagonists and their pharmacokinetics in rat and dog is described. Prediction of the estimated human oral absorption (EHOA) using measured lipophilicity (CHI log D) and calculated size (cMR) has allowed us to rank various 2,5-diketopiperazine templates and enabled us to focus effort on those templates with the greatest chance of high bioavailability in humans. This rapidly led to the 2',4'-difluorophenyl-dimethylamide 25 and the benzofuran 4 with high levels of potency (pK(i)) and good bioavailability in the rat and dog.
View Article and Find Full Text PDFA short stereoselective synthesis of a series of chiral 7-aryl-2,5-diketopiperazines oxytocin antagonists is described. Varying the functionality and substitution pattern of substituents in the 7-aryl ring and varying the chirality of this exocyclic ring have produced potent oxytocin antagonists (pK(i) > 8.5).
View Article and Find Full Text PDFNovel syntheses of chiral trisubstituted 2,5-diketopiperazines using multicomponent Ugi reactions were developed.
View Article and Find Full Text PDFThis paper covers efforts to discover orally active potent and selective oxytocin antagonists. Screening pooled libraries identified a novel series of 2,5-diketopiperazine derivatives with antagonist activity at the human oxytocin receptor. We report the initial structure-activity relationship investigations and the determination of the stereochemistry of the most potent compounds.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 1999
A novel synthesis of the bicyclo [2.2.2] octane ring system has been achieved utilising a tandem Henry cyclisation as the key stage.
View Article and Find Full Text PDFSynthesis of 5R-Acetamido-4S-amino-4H-pyran-6R-O-( -ethyl)propyl and 6R-(1-oxo-2-ethyl)butyl 2-carboxylic acids (4 and 5) and their evaluation as inhibitors of influenza virus sialidase is described. Both compounds showed good inhibitory activity with marked selectivity for influenza A sialidase.
View Article and Find Full Text PDFBackground: Inhibitors of the influenza virus neuraminidase have been shown to be effective antiviral agents in humans. Several studies have reported the selection of novel influenza strains when the virus is cultured with neuraminidase inhibitors in vitro. These resistant viruses have mutations either in the neuraminidase or in the viral haemagglutinin.
View Article and Find Full Text PDFThe first paper in this series (see previous article) described structure-activity studies of carboxamide analogues of zanamivir binding to influenza virus sialidase types A and B and showed that inhibitory activity of these compounds was much greater against influenza A enzyme. To understand the large differences in affinities, a number of protein-ligand complexes have been investigated using crystallography and molecular dynamics. The crystallographic studies show that the binding of ligands containing tertiary amide groups is accompanied by the formation of an intramolecular planar salt bridge between two amino acid residues in the active site of the enzyme.
View Article and Find Full Text PDF4-Amino- and 4-guanidino-4H-pyran-6-carboxamides 4 and 5 related to zanamivir (GG167) are a new class of inhibitors of influenza virus sialidases. Structure--activity studies reveal that, in general, secondary amides are weak inhibitors of both influenza A and B viral sialidases. However, tertiary amides, which contain one or more small alkyl groups, show much greater inhibitory activity, particularly against the influenza A virus enzyme.
View Article and Find Full Text PDF