Publications by authors named "Solki Min"

The safe and effective systemic delivery of siRNA is a prerequisite for the successful development of siRNA-based cancer therapeutics. For the enhanced delivery of siRNA, cationic lipids and polymers have been widely used as siRNA carriers to form electrolyte complexes with anionic siRNA. However, the considerable toxicity of strong cationic-charged molecules hampers their clinical use.

View Article and Find Full Text PDF

The condensed version: Thiolated glycol chitosan can form stable nanoparticles with polymerized siRNAs through charge-charge interactions and self-cross-linking (see scheme). This poly-siRNA/glycol chitosan nanoparticles (psi-TGC) provided sufficient in vivo stability for systemic delivery of siRNAs. Knockdown of tumor proteins by psi-TGC resulted in a reduction in tumor size and vascularization.

View Article and Find Full Text PDF

Herein, we developed the photosensitizer, protoporphyrin IX (PpIX), conjugated glycol chitosan (GC) nanoparticles (PpIX-GC-NPs) as tumor-homing drug carriers with cellular on/off system for photodynamic imaging and therapy, simultaneously. In order to prepare PpIX-GC-NPs, hydrophobic PpIXs were chemically conjugated to GC polymer and the amphiphilic PpIX-GC conjugates formed a stable nanoparticle structure in aqueous condition, wherein conjugated PpIX molecules formed hydrophobic inner-cores and they were covered by the hydrophilic GC polymer shell. Based on the nanoparticle structure, PpIX-GC-NPs showed the self-quenching effect that is 'off' state with no fluorescence signal and phototoxicity with light exposure.

View Article and Find Full Text PDF