Considering pure quantum states, entanglement concentration is the procedure where, from copies of a partially entangled state, a single state with higher entanglement can be obtained. Obtaining a maximally entangled state is possible for N=1. However, the associated success probability can be extremely low when increasing the system's dimensionality.
View Article and Find Full Text PDFPtychography is a technique widely used in microscopy for achieving high-resolution imaging. This method relies on computational processing of images gathered from diffraction patterns produced by several partial illuminations of a sample. We numerically studied the effect of using different shapes for illuminating the aforementioned sample: convex shapes, such as circles and regular polygons, and unconnected shapes that resemble a QR code.
View Article and Find Full Text PDFWe studied the mutual information and quantum discord that Alice and Bob share when Bob implements a discrimination with a fixed rate of inconclusive outcomes (FRIO) onto two pure non-orthogonal quantum states, generated with arbitrary a priori probabilities. FRIO discrimination interpolates between minimum error (ME) and unambiguous state discrimination (UD). ME and UD are well known discrimination protocols with several applications in quantum information theory.
View Article and Find Full Text PDFThe quantum analogue of ptychography, a powerful coherent diffractive imaging technique, is a simple method for reconstructing -dimensional pure states. It relies on measuring partially overlapping parts of the input state in a single orthonormal basis and feeding the outcomes to an iterative phase retrieval algorithm for postprocessing. We provide a proof of concept demonstration of this method by determining pure states given by superpositions of transverse spatial modes of an optical field.
View Article and Find Full Text PDFWe study the classical and quantum correlations in the minimum error discrimination (ME) of two non-orthogonal pure quantum states. In particular, we consider quantum discord, thermal discord and entropy generation. We show that ME allows one to reach the accessible information between the two involved parties, Alice and Bob, in the discrimination process.
View Article and Find Full Text PDFWe report on a new technique for entanglement distillation of the bipartite continuous variable state of spatially correlated photons generated in the spontaneous parametric down-conversion process (SPDC), where tunable non-Gaussian operations are implemented and the post-processed entanglement is certified in real-time using a single-photon sensitive electron multiplying CCD (EMCCD) camera. The local operations are performed using non-Gaussian filters modulated into a programmable spatial light modulator and, by using the EMCCD camera for actively recording the probability distributions of the twin-photons, one has fine control of the Schmidt number of the distilled state. We show that even simple non-Gaussian filters can be finely tuned to a ∼67% net gain of the initial entanglement generated in the SPDC process.
View Article and Find Full Text PDFQuantum mechanics forbids perfect discrimination among nonorthogonal states through a single shot measurement. To optimize this task, many strategies were devised that later became fundamental tools for quantum information processing. Here, we address the pioneering minimum-error (ME) measurement and give the first experimental demonstration of its application for discriminating nonorthogonal states in high dimensions.
View Article and Find Full Text PDFSpatial qudits are D-dimensional (D ≥ 2) quantum systems carrying information encoded in the discretized transverse momentum and position of single photons. We present a proof-of-principle demonstration of a method for preparing arbitrary pure states of such systems by using a single phase-only spatial light modulator (SLM). The method relies on the encoding of the complex transmission function corresponding to a given spatial qudit state onto a preset diffraction order of a phase-only grating function addressed at the SLM.
View Article and Find Full Text PDF