Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored.
View Article and Find Full Text PDFSpindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early embryo.
View Article and Find Full Text PDFEncapsulation of germline cells by layers of somatic cells forms the basic unit of female reproduction called primordial follicles in mammals and egg chambers in Drosophila. How germline and somatic tissues are coordinated for the morphogenesis of each separated unit remains poorly understood. Here, using improved live imaging of Drosophila ovaries, we uncovered periodic actomyosin waves at the cortex of germ cells.
View Article and Find Full Text PDFDuring epithelial cell proliferation, planar alignment of the mitotic spindle allows the daughter cells to stay within the epithelium. Previous work has identified cortical cues that regulate spindle orientation and the division axis [1, 2]. One such cue is cortical Pins (LGN in vertebrates) [3-6], which recruits the conserved Mud/NuMA protein and the dynein/dynactin complex to the cortex.
View Article and Find Full Text PDFSculpting organism shape requires that cells produce forces with proper directionality. Thus, it is critical to understand how cells orient the cytoskeleton to produce forces that deform tissues. During Drosophila gastrulation, actomyosin contraction in ventral cells generates a long, narrow epithelial furrow, termed the ventral furrow, in which actomyosin fibres and tension are directed along the length of the furrow.
View Article and Find Full Text PDFTissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding.
View Article and Find Full Text PDFThe propagation of force in epithelial tissues requires that the contractile cytoskeletal machinery be stably connected between cells through E-cadherin-containing adherens junctions. In many epithelial tissues, the cells' contractile network is positioned at a distance from the junction. However, the mechanism or mechanisms that connect the contractile networks to the adherens junctions, and thus mechanically connect neighboring cells, are poorly understood.
View Article and Find Full Text PDFTissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues.
View Article and Find Full Text PDFThe Notch pathway plays an integral role in development by regulating cell fate in a wide variety of multicellular organisms. A critical step in the activation of Notch signaling is the endocytosis of the Notch ligands Delta and Serrate. Ligand endocytosis is regulated by one of two E3 ubiquitin ligases, Neuralized (Neur) or Mind bomb.
View Article and Find Full Text PDFUnderstanding how epithelial polarity is established and regulated during tissue morphogenesis is a major issue. Here, we identify a regulatory mechanism important for mesoderm invagination, germ-band extension and transepithelial migration in the Drosophila melanogaster embryo. This mechanism involves the inhibition of the conserved E3 ubiquitin ligase Neuralized by proteins of the Bearded family.
View Article and Find Full Text PDFBackground: The ventral midbrain contains a diverse array of neurons, including dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN) and neurons of the red nucleus (RN). Dopaminergic and RN neurons have been shown to arise from ventral mesencephalic precursors that express Sonic Hedgehog (Shh). However, Shh expression, which is initially confined to the mesencephalic ventral midline, expands laterally and is then downregulated in the ventral midline.
View Article and Find Full Text PDFLateral inhibition mediated by Notch receptor signaling regulates the determination of sensory organ precursor cells (SOPs) in Drosophila. The selection of SOPs from proneural cluster cells appears to rely on a negative feedback loop linking activation of the Notch receptor to downregulation of its ligand Delta within each cell. The molecular basis of this regulatory feedback mechanism is not known.
View Article and Find Full Text PDF