Publications by authors named "Solich J"

Alcohol use disorder (AUD) is a common psychiatric condition with substantial global mortality. Despite extensive research into its pathophysiology, the cognitive predispositions driving alcohol dependence are less understood. This study explores whether biased cognition, specifically traits of optimism and pessimism, predicts susceptibility to alcohol-seeking behaviors using an animal model.

View Article and Find Full Text PDF

Rationale: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects.

Objectives: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST).

View Article and Find Full Text PDF

This study explored the impact of microRNAs, specifically mmu-miR-1a-3p and mmu-miR-155-5p, on stress susceptibility and resilience in mice of different strains. Previous research had established that C57BL/6J mice were stress-susceptible, while NET-KO and SWR/J mice displayed stress resilience. These strains also exhibited variations in the serum levels of mmu-miR-1a-3p and mmu-miR-155-5p.

View Article and Find Full Text PDF

Background: The results of our previous studies demonstrated that low sensitivity to negative feedback (NF) is associated with increased vulnerability to the development of compulsive alcohol-seeking in rats. In the present study, we investigated the molecular underpinnings of this relationship.

Methods: Using TaqMan Gene Expression Array Cards, we analyzed the expression of the genes related to NF sensitivity and alcohol metabolism in three cortical regions (medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC], orbitofrontal cortex [OFC]) and two subcortical regions (nucleus accumbens [Nacc], amygdala [Amy]).

View Article and Find Full Text PDF

Introduction: Alcohol use disorder (AUD) is one of the most common psychiatric disorders and a leading cause of mortality worldwide. While the pathophysiology underlying AUD is relatively well known, the cognitive mechanisms of an individual's susceptibility to the development of alcohol dependence remain poorly understood. In this study, we investigated the theoretical claim that sensitivity to positive feedback (PF), as a stable and enduring behavioural trait, can predict individual susceptibility to the acquisition and maintenance of alcohol-seeking behaviour in rats.

View Article and Find Full Text PDF

Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex.

View Article and Find Full Text PDF

The mechanisms of treatment-resistant depression (TRD) are not clear and are difficult to study. An animal model resembling human TRD is the Wistar Kyoto rat strain. In the present study, we focused on selecting miRNAs that differentiate rats of the WKY strain from Wistar Han (WIS) rats in two divisions of the habenula, the lateral and medial (LHb and MHb, respectively).

View Article and Find Full Text PDF

Background: Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed.

Methods: The experiments were conducted on C57BL/6J WT and NET male/female mice.

View Article and Find Full Text PDF

Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format).

View Article and Find Full Text PDF

Given the important role of brain-derived neurotrophic factor (BDNF)-mediated Trkβ signalling in the mechanism of action of antidepressants (ADs), we examined ligand-receptor interactions in the rat cingulate cortex using a proximity ligation assay (PLA) in response to acute and repeated administration of imipramine (IMI), followed by various drug-free periods. Both the acute and chronic administration of IMI increased the BDNF-Trkβ interaction observed 3 h after drug administration. Withdrawal of IMI for 72 h or 7 days did not alter BDNF-Trkβ interaction.

View Article and Find Full Text PDF

Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect.

View Article and Find Full Text PDF

Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress-coping strategies.

View Article and Find Full Text PDF

Long-lasting stress factors, both biological and psychological, are commonly accepted as the main cause of depressive disorders. Several animal models, using various stressful stimuli, have been used to find biochemical and molecular alterations that could help us understand the etiopathogenesis of depression. However, recent sophisticated studies indicate that the most frequently used animal models of stress only capture a portion of the molecular features associated with complex human disorders.

View Article and Find Full Text PDF

In the present study, we aim to identify the effect of restrain stress (RS) on the expression of miRNAs in mouse serum. We used three genotypes of animals (mice with knock-out of the gene-encoding norepinephrine transporter, ; , and ) which had previously been shown to display different sensitivity to RS, and focused on miRNAs which were altered by RS in the serum of all three genotypes. An analysis of miRNAs expression allowed for the identification of a set of 25 differentially expressed miRNAs; 10 were down-regulated compared to an appropriate control group of animals, while 15 were up-regulated.

View Article and Find Full Text PDF

Several biochemical parameters within the brain are altered by antidepressants. However, it is still uncertain which parameters are important for the evaluation of the effectiveness of these drugs. What seems certain is that the response of the nervous system is dynamic.

View Article and Find Full Text PDF

Background: The serotonin 5-HT receptor (5-HTR) and metabotropic glutamate receptor 4 (mGlu4) have been implicated as sites of antipsychotic drug action. 5-HTR belongs to the A class of G protein-coupled receptors (GPCRs); mGlu4 is a representative of class C GPCRs. Both receptors preferentially couple with Gi protein to inhibit cAMP formation.

View Article and Find Full Text PDF

In the present study, we used three strains of mice with various susceptibility to stress: mice with knock-out of the gene encoding norepinephrine transporter (NET-KO), which are well characterized as displaying a stress-resistant phenotype, as well as two strains of mice displaying two different stress-coping strategies, i.e., C57BL/6J (WT in the present study) and SWR/J.

View Article and Find Full Text PDF

Human dopamine D2 receptor (DR) gene has polymorphic variants, three of them alter its amino acid sequence: Val96Ala, Pro310Ser and Ser311Cys. Their functional role never became the object of extensive studies, even though there are some evidence that they correlate with schizophrenia. The present work reviews data indicating that these mutations play a role in dimer formation with dopamine D1 receptor (DR), with the strongest effect observed for Ser311Cys variant.

View Article and Find Full Text PDF

The mechanisms underlying the beneficial effects of clozapine (CLZ) in the treatment of schizophrenia still remains far from clear. In the present work we studied the effect of CLZ on the dopamine D receptors (DR) in the mouse brain. CLZ was administered after ketamine (KET) in a paradigm strictly matching the one used in KET-induced attentional set-shifting task (ASST).

View Article and Find Full Text PDF

Initially G protein-coupled receptors, GPCRs, were thought to act as monomers, but recently strong evidence has been gathered indicating that they are capable of forming homo- and heterodimers or higher order oligomeric complexes, and that the dimerization phenomenon can modulate the pharmacological response and function of these receptors. In this chapter we point to the great potential of alternative therapeutic approach targeted at GPCR dimers, which is especially important in the field of neuropsychopharmacology. We also included a brief description of methods used for studying the phenomenon of GPCR oligomerization, with particular attention paid to the proximity ligation assay, PLA, the procedure which allows the study of interactions between receptors not only in vitro but also in vivo, with good anatomical resolution, what is especially important in the studies of various GPCRs involved in central neurotransmission.

View Article and Find Full Text PDF

Rationale: The role of somatostatin and its receptors for the stress-related neuropsychiatric disorders has been widely raised. Recently, we have also demonstrated the involvement of somatostatin receptor type 2-sst2R and dopamine receptor type 2-D2R in stress.

Objective: In this context, we decided to find if these receptors are involved in response to antidepressant treatment in animal model of depression-chronic mild stress (CMS).

View Article and Find Full Text PDF

Recently, it has been shown that serotonin 5-HT receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT-D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT-D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.

View Article and Find Full Text PDF

We have previously reported the effects of intracranial injections of dopamine D1, D2 and D3 ligands in animals subjected to the Novel Object Recognition (NOR) test following exposure to chronic mild stress (CMS) and chronic treatment with risperidone (RSP). Here, we present some molecular biological data from the same animals. It was predicted that brain-derived neurotrophic factor (BDNF) signalling in the prefrontal cortex (PFC) would reflect behavioural performance, implying an increase following acute administration of a D2 agonist or a D3 antagonist, blockade of this effect by CMS and its restoration by chronic RSP.

View Article and Find Full Text PDF