Broaching is a key manufacturing process that directly influences the surface integrity of critical components, impacting their functional performance in sectors such as aeronautics, automotive, and energy. Such components are subjected to severe conditions, including high thermomechanical loads, fatigue, and corrosion. For this reason, the development of predictive models is essential for determining the optimal tool design and machining conditions to ensure proper in-service performance.
View Article and Find Full Text PDFRealization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers.
View Article and Find Full Text PDFAim: This exploratory study evaluates rating scale usage by experts from the European Reference Network for Rare Neurological Diseases (ERN-RND) for paediatric MD, considering factors like diagnosis, intellectual disability, age, and transition to adult care. The aim is to propose a preliminary framework for consistent application.
Methods: A multicentre survey among 25 ERN-RND experts from 10 European countries examined rating scale usage in paediatric MD, categorizing MD into acute, non-progressive, and neurodegenerative types.
Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111).
View Article and Find Full Text PDFThe development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section.
View Article and Find Full Text PDFThe mechano-electrical transduction (MET) channel of the inner ear receptor cells, termed hair cells, is a protein complex that enables our senses of hearing and balance. Hair cell MET requires an elaborate interplay of multiple proteins that form the MET channel. One of the MET complex components is the transmembrane protein LHFPL5, which is required for hair cell MET and hearing.
View Article and Find Full Text PDFThe design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (, , and ) featuring majority zigzag peripheries.
View Article and Find Full Text PDFThe synthesis of two-dimensionally extended polycyclic heteroatomic molecules keeps attracting considerable attention. In particular, frameworks bearing planar cyclooctatetraenes (COT) moieties can display intriguing properties, including antiaromaticity. Here, we present an on-surface chemistry route to square-type porphyrin tetramers with a central COT ring, coexisting with other oligomers.
View Article and Find Full Text PDFMultiple myeloma (MM) remains a lethal hematologic cancer characterized by the expansion of transformed plasma cells within the permissive bone marrow (BM) milieu. The emergence of relapsed and/or refractory MM (RRMM) is provoked through clonal evolution of malignant plasma cells that harbor genomic, metabolic and proteomic perturbations. For most patients, relapsed disease remains a major cause of overall mortality.
View Article and Find Full Text PDFNanocrystalline structured variants of commercially available alloys have shown potential for boosting the mechanical properties of these materials, leading to a reduction in waste and thereby retaining feasible supply chains. One approach towards achieving these nanostructures resides in frictional treatments on manufactured parts, leading to differential refinement of the surface structure as compared to the bulk material. In this work the machining method is considered to be a testing platform for the formation and study of frictional nanostructured steel, assembly of which is stabilized by fast cooling of the produced chip.
View Article and Find Full Text PDFTraditionally, Eosinophilic Granulomatosis with Polyangiitis (EGPA) has been treated with systemic corticosteroids and immunosuppressants. In recent years, therapeutic efforts have been directed towards targeting eosinophils which represent a major player in the pathogenesis of EGPA. In 2017 the Food and Drug Administration (FDA) approved mepolizumab, a humanized monoclonal antibody targeting interleukin 5 (IL-5) which reduces the production and survival of eosinophils, already used to treat severe eosinophilic asthma, for the management of EGPA.
View Article and Find Full Text PDFThere is an increasing demand for supporting the adoption of rapid whole-genome sequencing (rWGS) by demonstrating its real-world value. We aimed to assess the cost-effectiveness of rWGS in critically ill pediatric patients with diseases of unknown cause. Data were collected prospectively of patients admitted to the Nicklaus Children's Hospital's intensive care units from March 2018 to September 2020, with rWGS (N = 65).
View Article and Find Full Text PDFStudy of human monocytic Myeloid-Derived Suppressor cells Mo-MDSC (CD14 HLA-DR) has been hampered by the lack of positive cell-surface markers. In order to identify positive markers for Mo-MDSC, we performed microarray analysis comparing Mo-MDSC cells from healthy subjects versus CD14 HLA-DR monocytes. We have identified the surface ectoenzyme Vanin-2(VNN2) protein as a novel biomarker highly-enriched in healthy subjects Mo-MDSC.
View Article and Find Full Text PDFIntroduction: Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies.
View Article and Find Full Text PDFFront Cell Dev Biol
September 2021
Chromosomal instability, the most frequent form of plasticity in cancer cells, often proceeds through the formation of chromosome bridges. Despite the importance of these bridges in tumor initiation and progression, debate remains over how and when they are resolved. In this study, we investigated the behavior and properties of chromosome bridges to gain insight into the potential mechanisms underlying bridge-induced genome instability.
View Article and Find Full Text PDFThe inability to over-express Aquaporin 6 (AQP6) in the plasma membrane of heterologous cells has hampered efforts to further characterize the function of this aquaglyceroporin membrane protein at atomic detail using crystallographic approaches. Using an Aquaporin 3-tGFP Reporter (AGR) system we have identified a region within loop C of AQP6 that is responsible for severely hampering plasma membrane expression. Serine substitution corroborated that amino acids present within AQP6 of AQP6 loop C contribute to intracellular endoplasmic reticulum (ER) retention.
View Article and Find Full Text PDFWater is frequently found inside proteins, carrying out important roles in catalytic reactions or molecular recognition tasks. Therefore, computational models that aim to study protein-ligand interactions usually have to include water effects through explicit or implicit approaches to obtain reliable results. While full explicit models might be too computationally daunting for some applications, implicit models are normally faster but omit some of the most important contributions of water.
View Article and Find Full Text PDFMalformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management.
View Article and Find Full Text PDFBackground: Brain metastases (BM) are the most common type of brain tumor malignancy in the US. They are also the most common indication for stereotactic radiosurgery (SRS). However, the incidence of both local recurrence and radiation necrosis (RN) is increasing as treatments improve.
View Article and Find Full Text PDF