Publications by authors named "Solenne Berardocco"

The crop cycle of winter oilseed rape (WOSR) incorporates source-to-sink remobilisation during the vegetative stage as a principal factor influencing the ultimate seed yield. These processes are supported by the coordinated activity of the plant's central metabolism. However, climate change-induced drought will affect the metabolic acclimation of WOSR sink/source relationships at this vegetative stage, with consequences that remain to be determined.

View Article and Find Full Text PDF

The data presented in this paper include the original and processed MRI images acquired with a 1.5 T whole-body MRI scanner, describing the growth kinetics, spatialization and appearance of internal defaults of individual tubers of potato plants (Rosanna cultivar of ) grown in pots in a semi-controlled environment and exposed to two water regimes. The 2 conditions were a well-watered regime, in which soil moisture was maintained at 70 % of field capacity, and a variable water deficit regime, in which soil moisture was reduced to 20 % of field capacity several times during tuber growth, followed each time by a few-day period of rehydration to 70 % of field capacity.

View Article and Find Full Text PDF

Plant central carbon metabolism comprises several important metabolic pathways acting together to support plant growth and yield establishment. Despite the emergence of C-based dynamic approaches, the regulation of metabolic fluxes between light and dark conditions has not yet received sufficient attention for agronomically relevant plants. Here, we investigated the impact of light/dark conditions on carbon allocation processes within central carbon metabolism of Brassica napus after U-C-glucose incorporation into leaf discs.

View Article and Find Full Text PDF

The estimation of metabolic fluxes in photosynthetic organisms represents an important challenge that has gained interest over the last decade with the development of C-Metabolic Flux Analysis at isotopically non-stationary steady-state. This approach requires a high level of accuracy for the measurement of Carbon Isotopologue Distribution in plant metabolites. But this accuracy has still not been evaluated at the isotopologue level for GC-MS, leading to uncertainties for the metabolic fluxes calculated based on these fragments.

View Article and Find Full Text PDF

Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family.

View Article and Find Full Text PDF

Faced with the challenges of adapting agriculture to climate change, seed production should have increased resilience to abiotic stress factors and the expected proliferation of pathogens. This concerns both the nutritional quality and seed vigor, two crucial factors in seedling establishment and yield. Both qualities are acquired during seed development, but how environment influences the genetic and physiological determinisms of these qualities remains to be elucidated.

View Article and Find Full Text PDF

Background And Aims: Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding.

View Article and Find Full Text PDF

Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A.

View Article and Find Full Text PDF

The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration.

View Article and Find Full Text PDF

Enhancing natural mechanisms of plant defense against herbivores is one of the possible strategies to protect cultivated species against insect pests. Host plant feeding stimulation, which results from phagostimulant and phagodeterrent effects of both primary and secondary metabolites, could play a key role in levels of damage caused to crop plants. We tested this hypothesis by comparing the feeding intensity of the pollen beetle Meligethes aeneus on six oilseed rape (Brassica napus) genotypes in a feeding experiment, and by assessing the content of possible phagostimulant and phagodeterrent compounds in tissues targeted by the insect (flower buds).

View Article and Find Full Text PDF