Publications by authors named "Solene-Emmanuelle Boitard"

This work explores the epicardial implantation of acellular chitosan hydrogels in two murine models of cardiomyopathy, focusing on their potential to restore the functional capacity of the heart. Different chitosan hydrogels were generated using polymers of four degrees of acetylation, ranging from 2.5% to 38%, because the degree of acetylation affects their degradation and biological activity.

View Article and Find Full Text PDF

The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment.

View Article and Find Full Text PDF

Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. We hypothesized that orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity.

View Article and Find Full Text PDF

The formation of chitosan hydrogels without any external cross-linking agent was successfully achieved by inducing the gelation of a viscous chitosan solution with aqueous NaOH or gaseous NH3. The hydrogels produced from high molecular weight (Mw ≈ 640 000 g mol(-1)) and extensively deacetylated chitosan (DA ≈ 2.8%) at polymer concentrations above ∼2.

View Article and Find Full Text PDF

Limited data are available on the effects of stem cells in non-ischemic dilated cardiomyopathy (DCM). Since the diffuse nature of the disease calls for a broad distribution of cells, this study investigated the scaffold-based delivery of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) in a mouse model of DCM. Nanofibrous scaffolds were produced using a clinical grade atelocollagen which was electrospun and cross-linked under different conditions.

View Article and Find Full Text PDF

Background: Cardiac-committed cells and biomimetic scaffolds independently improve the therapeutic efficacy of stem cells. In this study we tested the long-term effects of their combination.

Methods: Eighty immune-deficient rats underwent permanent coronary artery ligation.

View Article and Find Full Text PDF

Muscle glycogen phosphorylase (GP) plays an important role in muscle functions. Mercury has toxic effects in skeletal muscle leading to muscle weakness or cramps. However, the mechanisms underlying these toxic effects are poorly understood.

View Article and Find Full Text PDF

Aims: Few studies have assessed the effects of cell therapy in non-ischaemic cardiomyopathies which, however, contribute to a large number of cardiac failures. Assuming that such conditions are best suited for a global delivery of cells, we assessed the effects of epicardially delivered adipose tissue-derived stroma cell (ADSC) sheets in a mouse model of dilated cardiomyopathy based on cardiac-specific and tamoxifen-inducible invalidation of serum response factor.

Methods And Results: Three weeks after tamoxifen administration, the function of the left ventricle (LV) was assessed by echocardiography.

View Article and Find Full Text PDF