Publications by authors named "Solene Belisle-Fabre"

Following our search for antimalarial compounds, novel series of ferrocenyl-substituted pyrrolo[1,2-a]quinoxalines 1-2 were synthesized from ferrocene-carboxaldehyde and tested for their in vitro activity upon the erythrocytic development of Plasmodium falciparum strains with different chloroquine-resistance status. The ferrocenic pyrrolo[1,2-a]quinoxalines 1-2 were prepared in 6 or 9 steps through a Barton-Zard reaction. Promising pharmacological results against FcB1, K1 and F32 strains were obtained with ferrocenyl pyrrolo[1,2-a]quinoxalines 1j-l linked by a bis-(3-aminopropyl)piperazine linker substituted by a nitrobenzyl moiety.

View Article and Find Full Text PDF

A novel series of isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives was synthesized and evaluated in vitro against various human cancer cell lines for antiproliferative activity. These new compounds displayed activity against leukemia and breast cancer cell lines in the 3- to 18-µM concentration range.

View Article and Find Full Text PDF

Attenuation of protein kinases by selective inhibitors is an extremely active field of activity in anticancer drug development. Therefore, Akt, a serine/threonine protein kinase, also known as protein kinase B (PKB), represents an attractive potential target for therapeutic intervention. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel inhibitors with various heterocycle scaffolds.

View Article and Find Full Text PDF

Akt kinases are attractive targets for small molecule drug discovery because of their key role in tumor cell survival/proliferation and their overexpression/activation in many human cancers. Recent efforts in the development and biological evaluation of small molecule inhibitors of Akt have led to the identification of novel Akt kinase inhibitors, based on a quinoxaline or pyrazinone scaffold. A series of new substituted pyrrolo[1,2-a]quinoxaline derivatives, structural analogues of these active quinoxaline or pyrazinone pharmacophores, was synthesized from various substituted 2-nitroanilines or 1,2-phenylenediamine via multistep heterocyclization process.

View Article and Find Full Text PDF

Following our search for antimalarial compounds, novel series of ferrocenic pyrrolo[1,2-a]quinoxaline derivatives 1-2 were synthesized from various substituted nitroanilines and tested for in vitro activity upon the erythrocytic development of Plasmodiumfalciparum strains with different chloroquine-resistance status. The pyrrolo[1,2-a]quinoxalines 1 were prepared in 6-8 steps through a regioselective palladium-catalyzed monoamination by coupling 4-chloropyrrolo[1,2-a]quinoxalines with 1,3-bis(aminopropyl)piperazine or -methylamine using Xantphos as the ligand. The ferrocenic bispyrrolo[1,2-a]quinoxalines 2 were prepared by reductive amination of previously described bispyrrolo[1,2-a]quinoxalines 9 with ferrocene-carboxaldehyde, by treatment with NaHB(OAc)(3).

View Article and Find Full Text PDF

A series of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxaline derivatives, structural analogues of alkaloid chimanine B, was synthesized in good yields using efficient palladium(0)-catalyzed Suzuki-Miyaura cross-coupling reactions. These new compounds were tested for in vitro antiparasitic activity upon Leishmania amazonensis and Leishmania infantum strains. Biological results showed activity against the promastigote forms of L.

View Article and Find Full Text PDF