Background: The spread of antibiotic-resistant bacteria may be driven by human-animal-environment interactions, especially in regions with limited restrictions on antibiotic use, widespread food animal production, and free-roaming domestic animals. In this study, we aimed to identify risk factors related to commercial food animal production, small-scale or "backyard" food animal production, domestic animal ownership, and practices related to animal handling, waste disposal, and antibiotic use in Ecuadorian communities.
Methods And Findings: We conducted a repeated measures study from 2018 to 2021 in 7 semirural parishes of Quito, Ecuador to identify determinants of third-generation cephalosporin-resistant E.
The coronavirus 2019 (COVID-19) pandemic has had significant impacts on health systems, population dynamics, public health awareness, and antibiotic stewardship, which could affect antibiotic resistant bacteria (ARB) emergence and transmission. In this study, we aimed to compare knowledge, attitudes, and practices (KAP) of antibiotic use and ARB carriage in Ecuadorian communities before versus after the COVID-19 pandemic began. We leveraged data collected for a repeated measures observational study of third-generation cephalosporin-resistant E.
View Article and Find Full Text PDFDomestic animals in the household environment have the potential to affect a child's carriage of zoonotic enteric pathogens and risk of diarrhea. This study examines the risk factors associated with pediatric diarrhea and carriage of zoonotic enteric pathogens among children living in communities where smallholder livestock production is prevalent. We conducted an observational study of children younger than 5 years that included the analysis of child ( = 306) and animal ( = 480) fecal samples for spp atypical enteropathogenic , Shiga toxin-producing , spp.
View Article and Find Full Text PDF