Gold nanoparticles (GNPs) decorated with glycans ameliorate dendritic cells (DC) uptake, antigen-presentation and T-cells cross-talk, which are important aspects in vaccine design. GNPs allow for high antigen loading, DC targeting, lack of toxicity and are straightforward prepared and easy to handle. The present study aimed to assess the capacity of DC to process and present HIV-1-peptides loaded onto GNPs bearing high-mannoside-type oligosaccharides (P1@HM) to autologous T-cells from HIV-1 patients.
View Article and Find Full Text PDFClinical cases of neonatal listeriosis are associated with brain disease and fetal loss due to complications in early or late pregnancy, which suggests that microglial function is altered. This is believed to be the first study to link microglial apoptosis with neonatal listeriosis and listeriosis-associated brain disease, and to propose a new nanovaccine formulation that reverses all effects of listeriosis and confers (LM)-specific immunity. We examined clinical cases of neonatal listeriosis in 2013-2015 and defined two useful prognostic immune biomarkers to design listeriosis vaccines: high anti-GAPDH titres and tumor necrosis factor (TNF)/interleukin (IL)-6 ratios.
View Article and Find Full Text PDFAim: Nanotechnology-based fully synthetic carbohydrate vaccines are promising alternatives to classic polysaccharide/protein conjugate vaccines. We have prepared gold glyco-nanoparticles (GNP) bearing two synthetic carbohydrate antigens related to serotypes 19F and 14 of Streptococcus pneumoniae and evaluated their immunogenicity in vivo.
Results: A tetrasaccharide fragment of serotype 14 (Tetra-14), a trisaccharide fragment of serotype 19F (Tri-19F), a T-helper peptide and d -glucose were loaded onto GNP in different ratios.
In this feature article we discuss the particular relevance of glycans as components or targets of functionalized nanoparticles (NPs) for potential applications in personalized medicine but we will not enter into descriptions for their preparation. For a more general view covering the preparation and applications of glyconanomaterials the reader is referred to a number of recent reviews. The combination of glyco- and nanotechnology is already providing promising new tools for more personalized solutions to diagnostics and therapy.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2016
CD163 is a membrane receptor expressed by macrophage lineage. Studies performed in atherosclerosis have shown that CD163 expression is increased at inflammatory sites, pointing at the presence of intraplaque hemorrhagic sites or asymptomatic plaques. Hence, imaging of CD163 expressing macrophages is an interesting strategy in order to detect atherosclerotic plaques.
View Article and Find Full Text PDFGold nanorods have numerous applications in biomedical research, including diagnostics, bioimaging, and photothermal therapy. Even though surfactant removal and surface conjugation with antifouling molecules such as polyethylene glycol (PEG) are required to minimize nonspecific protein binding and cell uptake, the reliable characterization of these processes remains challenging. We propose here the use of laser desorption/ionization mass spectrometry (LDI-MS) to study the ligand exchange efficiency of cetyltrimethylammonium bromide (CTAB)-coated nanorods with different PEG grafting densities and to characterize nanorod internalization in cells.
View Article and Find Full Text PDFThe third variable region (V3 peptide) of the HIV-1 gp120 is a major immunogenic domain of HIV-1. Controlling the formation of the immunologically active conformation is a crucial step to the rational design of fully synthetic candidate vaccines. Herein, we present the modulation and stabilization of either the α-helix or β-strand conformation of the V3 peptide by conjugation to negatively charged gold glyconanoparticles (GNPs).
View Article and Find Full Text PDFPoly(ethylene glycol) (PEG) has become the gold standard for stabilization of plasmonic nanoparticles (NPs) in biofluids, because it prevents aggregation while minimizing unspecific interactions with proteins. Application of Au NPs in biological environments requires the use of ligands that can target selected receptors, even in the presence of protein-rich media. We demonstrate here the stabilizing effect of low-molecular-weight glycans on both spherical and rod-like plasmonic NPs under physiological conditions, as bench-marked against the well-established PEG ligands.
View Article and Find Full Text PDFIn the search for an effective vaccine against the human pathogen, Listeria monocytogenes (Listeria), gold glyconanoparticles (GNP) loaded with a listeriolysin O peptide LLO91-99 (GNP-LLO) were used to immunise mice, initially using a dendritic cell (DC) vaccine approach, but subsequently using a standard parenteral immunisation approach. To enhance vaccine immunogenicity a novel polysaccharide adjuvant based on delta inulin (Advax™) was also co-formulated with the GNP vaccine. Confirming previous results, DC loaded in vitro with GNP-LLO provided better protection against listeriosis than DC loaded in vitro using free LLO peptide.
View Article and Find Full Text PDFIn order to re-build Man9GlcNAc2 clusters of the HIV gp120 glycoprotein, ∼2 nm gold glyconanoparticles (GNPs) were coated with the synthetic partial structures of Man9, the tetramannoside Manα1-2Manα1-2Manα1-3Manα1- and the pentamannoside Manα1-2Manα1-3[Manα1-2Manα1-6]Manα1-. Their interactions with the anti-HIV broadly neutralizing antibody 2G12 were studied by surface plasmon resonance (SPR)-based biosensors and saturation transfer difference (STD)-NMR spectroscopy. A synergistic effect of the tetra- and pentamannosides multimerized on a same GNP was observed.
View Article and Find Full Text PDFNeuroblasts represent the predominant migrating cell type in the adult mouse brain. There are, however, increasing evidences of migration of other neural precursors. This work aims at identifying in vivo endogenous early neural precursors, different from neuroblasts, able to migrate in response to brain injuries.
View Article and Find Full Text PDFDendritic Cells (DCs), the most potent antigen-presenting cells, play a critical role in the detection of invading pathogens, which are recognized also by multiple carbohydrate-specific receptors. Among them, DC-SIGN is one of the best characterized, with high-mannose and Lewis-type glycan specificity. In this study, we present a potent DC-SIGN targeting device developed using gold nanoparticles functionalized with α-fucosyl-β-alanyl amide.
View Article and Find Full Text PDFThe therapeutic approach for the treatment of HIV infection is based on the highly active antiretroviral therapy (HAART), a cocktail of antiretroviral drugs. Notwithstanding HAART has shown different drawbacks like toxic side effects and the emergence of viral multidrug resistance. Nanotechnology offers new tools to improve HIV drug treatment and prevention.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) plays an important role in tumor detection/diagnosis. The use of exogenous contrast agents (CAs) helps to improve the discrimination between lesion and neighbouring tissue, but most of the currently available CAs are non-specific. Assessing the performance of new, selective CAs requires exhaustive assays and large amounts of material.
View Article and Find Full Text PDFThe dynamic behaviour of gold nanoparticles functionalised with glucose (Glc-Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc-Au NPs fluorescently-labelled with HiLyte Fluor647 (Glc-Au-Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell.
View Article and Find Full Text PDFNew tools and techniques to improve brain visualization and assess drug permeability across the blood-brain barrier (BBB) are critically needed. Positron emission tomography (PET) is a highly sensitive, noninvasive technique that allows the evaluation of the BBB permeability under normal and disease-state conditions. In this work, we have developed the synthesis of novel water-soluble and biocompatible glucose-coated gold nanoparticles (GNPs) carrying BBB-permeable neuropeptides and a chelator of the positron emitter (68)Ga as a PET reporter for in vivo tracking biodistribution.
View Article and Find Full Text PDFGalactofuranose (Galf) is the five-membered ring form of galactose exclusively found in nonmammalian species, among which several are pathogens. To determine the putative role of this carbohydrate in host-pathogen interactions, we synthesized multivalent gold nanoparticles carrying Galf (Galf-GNPs) and show that they are recognized by the EB-A2 antibody, which is widely used to detect Galf-containing galactomannan in the serum of Aspergillosis patients. We demonstrated that human monocyte-derived dendritic cells bound Galf-GNPs via interaction with the lectin DC-SIGN.
View Article and Find Full Text PDFImproved detection of anti-carbohydrate antibodies is a need in clinical identification of biomarkers for cancer cells or pathogens. Here, we report a new ELISA approach for the detection of specific immunoglobulins (IgGs) against carbohydrates. Two nanometer gold glyconanoparticles bearing oligosaccharide epitopes of HIV or Streptococcus pneumoniae were used as antigens to coat ELISA-plates.
View Article and Find Full Text PDFTargeted magnetic resonance imaging (MRI) probes for selective cell labelling and tracking are highly desired. We here present biocompatible sugar-coated paramagnetic Gd-based gold nanoparticles (Gd-GNPs) and test them as MRI T reporters in different cellular lines at a high magnetic field (11.7 T).
View Article and Find Full Text PDFPolyvalent carbohydrate-protein interactions play a key role in bio- and pathological processes, including cell-cell communication and pathogen invasion. In order to study, control and manipulate these interactions gold nanoparticles have been employed as a 3D scaffold, presenting carbohydrate ligands in a multivalent fashion for use as high affinity binding partners and a model system for oligosaccharide presentation at biomacromolecular surfaces. In this study, the binding of a series of mannose-functionalised gold nanoparticles to the dimeric BC2L-A lectin from Burkholderia cenocepacia has been evaluated.
View Article and Find Full Text PDFGlyconanotechnology can be seen as the synergy between nanotechnology and glycan related biological and medical problems. This review focuses on the crosstalk of glycoscience and nanotechnology, which will lead to a deeper understanding of glycobiology and to new glyco-materials with improved design and synergistic properties derived from glycoscience concepts for future nanodevices. It is intended to provide the glycoscientist with an application-oriented entry to the possibilities of nanotechnologies for his research.
View Article and Find Full Text PDFThe quest for the construction of multivalent carbohydrate systems, with precise geometries that are highly efficient in interacting with carbohydrate binding proteins, has been a goal of synthetic chemists since the discovery of the multivalent nature of carbohydrate-mediated interactions. However, the control of the spatial and topological requirements for these systems is still a challenge. Glyconanoparticles (GNPs) are sugar-coated gold, iron oxide or semiconductor nanoparticles with defined thiol-ending glycosides that combine the multivalent presentation of carbohydrates (glycoclusters) with the special chemico-physical properties of the nano-sized metallic core.
View Article and Find Full Text PDFMultivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters.
View Article and Find Full Text PDF