Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad.
View Article and Find Full Text PDFAntioxidant actions of melatonin and its impact on testicular function and fertility have already been described. Considering that Sertoli cells contribute to provide structural support and nutrition to germ cells, we evaluated the effect of melatonin on oxidative state and lactate metabolism in the immature murine TM4 cell line and in immature hamster Sertoli cells. A prooxidant stimulus applied to rodent Sertoli cells expressing MT1/MT2 receptors, increased lipid peroxidation whereas decreased antioxidant enzymes (superoxide dismutase 1, catalase, peroxiredoxin 1) expression and catalase activity.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
October 2022
Background: Peritubular myoid cells are emerging as key regulators of testicular function in adulthood. However, little is known about the role of testicular peritubular myoid cells (TPMCs) in the development of the male gonad. We found that, compared to testes of young adult hamsters, gonads of 21 day-old animals show increased melatonin concentration, seminiferous tubular wall thickening and a heterogeneous packaging of its collagen fibers thus raising the question whether melatonin may be involved in the regulation of TPMCs.
View Article and Find Full Text PDFCells
November 2021
The evolutionary theory of aging supports a trade-off relationship between reproduction and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease in the levels of sexual hormones, alterations in sperm quality and production, and a decline in fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases that are frequently observed in aged testes.
View Article and Find Full Text PDFWe have previously shown an inverse correlation between testicular melatonin concentration and inflammation/oxidative stress-related markers levels in infertile men showing unexplained azoospermia. Here, we evaluated the impact of melatonin oral supplementation (daily 3 mg dose used to treat sleep disorders) in the incidence of local inflammation, oxidative stress, and tubular wall fibrosis development in young and middle-aged infertile adult men. Compared with testes without histological alterations, gonads with morphological abnormalities showed lower melatonin concentration along with increased macrophage numbers, TBARS generation, and expression levels of inflammation-related markers and antioxidant enzymes, as well as tubular wall collagen fibers disorganization and thickening.
View Article and Find Full Text PDFCatecholaminergic neuronal elements (CNE) and macrophages (MACs) are increased in testes of patients with idiopathic infertility. Now, we describe an anatomical proximity between CNE and MACs, expression of specific α- and β-adrenergic receptors (ADRs) subtypes in MACs, and a positive correlation between the number of MACs and cyclooxygenase (COX2) expression - key enzyme in prostaglandin (PG) synthesis and an inflammatory marker - in testes of infertile men. To examine a potential effect of adrenergic input on COX2 expression, we used two additional experimental models: non-testicular human MACs (THP1 cell line) and non-human testicular MACs purified from adult Syrian hamsters.
View Article and Find Full Text PDFDietary restriction promotes cell regeneration and stress resistance in multiple models of human diseases. One of the conditions that could potentially benefit from this strategy is Alzheimer's disease, a chronic, progressive and prevalent neurodegenerative disease. Although there are no effective pharmacological treatments for this pathology, lifestyle interventions could play therapeutic roles.
View Article and Find Full Text PDFIn man, blockage of prostaglandin (PG)-production e.g. by non-steroidal anti-inflammatory drug (NSAIDs) may have negative testicular side effects, implying beneficial actions of PGs in the testis.
View Article and Find Full Text PDFStress activates the sympathetic nervous system and is linked to impaired fertility in man. We hypothesized that catecholamines by acting on testicular cells have a role in these events, possibly by fostering an inflammatory environment. The cells of the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), express adrenergic receptors (ADRs) α1B, α1D, β1 and β2.
View Article and Find Full Text PDFThe pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells.
View Article and Find Full Text PDFTransgenic mice overexpressing growth hormone (GH) show increased hepatic protein content of the epidermal growth factor receptor (EGFR), which is broadly associated with cell proliferation and oncogenesis. However, chronically elevated levels of GH result in desensitization of STAT-mediated EGF signal and similar response of ERK1/2 and AKT signaling to EGF compared to normal mice. To ascertain the mechanisms involved in GH attenuation of EGF signaling and the consequences on cell cycle promotion, phosphorylation of signaling mediators was studied at different time points after EGF stimulation, and induction of proteins involved in cell cycle progression was assessed in normal and GH-overexpressing transgenic mice.
View Article and Find Full Text PDFReactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival.
View Article and Find Full Text PDFCurrent GH administration protocols imply frequent s.c. injections, resulting in suboptimal compliance.
View Article and Find Full Text PDFGen Comp Endocrinol
November 2012
We have previously described a stimulatory effect of testosterone on cyclooxygenase 2 (COX2) expression and prostaglandin (PG) synthesis, and the involvement of PGs in the modulation of testosterone production in Leydig cells of the seasonal breeder Syrian hamster. In this study, we investigated the existence of a COX2/PGs system in hamster Sertoli cells, its regulation by testosterone and FSH, and its effect on glucose uptake. COX2 expression was observed in Sertoli cells of both reproductively active and inactive adult hamsters.
View Article and Find Full Text PDFWe have previously described that melatonin inhibits androgen production in hamster testes via melatonin subtype 1a (mel1a) receptors and the local corticotrophin-releasing hormone (CRH) system. This study attempted to determine the initial events of the melatonin/CRH signaling pathway. In Leydig cells from reproductively active Syrian hamsters, Western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and a colorimetric assay demonstrated that melatonin and CRH activate tyrosine phosphatases and subsequently reduce the phosphorylation levels of extracellular signal-regulated kinase (erk) and c-jun N-terminal kinase (jnk), down-regulate the expression of c-jun, c-fos and steroidogenic acute regulatory (StAR), and inhibit the production of testosterone.
View Article and Find Full Text PDFSerum prolactin (PRL) variations play a crucial role in the photoperiodic-induced testicular regression-recrudescence transition in hamsters. We have previously shown that cyclooxygenase 2 (COX2), a key enzyme in the biosynthesis of prostaglandins (PGs), is expressed mostly in Leydig cells of reproductively active hamsters with considerable circulating and pituitary levels of PRL. In this study, we describe a stimulatory effect of PRL on COX2/PGs in hamster Leydig cells, which is mediated by IL-1β and prevented by P38-MAPK and JAK2 inhibitors.
View Article and Find Full Text PDF