Publications by authors named "Soledad Miranda-Rottmann"

Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD.

View Article and Find Full Text PDF

Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head.

View Article and Find Full Text PDF

The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) remains unknown. We performed a spine STDP protocol using two-photon (2P) glutamate uncaging (pre) paired with postsynaptic spikes (post) in layer 5 pyramidal neurons from juvenile mice. Here we report that pre-post pairings that trigger timing-dependent LTP (t-LTP) produce shrinkage of the activated spine neck and increase in synaptic strength; and post-pre pairings that trigger timing-dependent LTD (t-LTD) decrease synaptic strength without affecting spine shape.

View Article and Find Full Text PDF

Dopamine receptors are integral membrane proteins whose endogenous ligand is dopamine. They play a fundamental role in the central nervous system and dysfunction of dopaminergic neurotransmission is responsible for the generation of a variety of neuropsychiatric disorders. From an evolutionary standpoint, phylogenetic relationships among the DRD class of dopamine receptors are still a matter of debate as in the literature different tree topologies have been proposed.

View Article and Find Full Text PDF

The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development.

View Article and Find Full Text PDF

The frequency sensitivity of auditory hair cells in the inner ear varies with their longitudinal position in the sensory epithelium. Among the factors that determine the differential cellular response to sound is the resonance of a hair cell's transmembrane electrical potential, whose frequency correlates with the kinetic properties of the high-conductance Ca(2+)-activated K(+) (BK) channels encoded by a Slo (kcnma1) gene. It has been proposed that the inclusion of specific alternative axons in the Slo transcripts along the cochlea underlies the gradient of BK-channel kinetics.

View Article and Find Full Text PDF

The positive health effects derived from moderate wine consumption are pleiotropic. They appear as improvements in cardiovascular risk factors such as plasma lipids, haemostatic mechanisms, endothelial function and antioxidant defences. The active principles would be ethanol and mainly polyphenols.

View Article and Find Full Text PDF

Cu(II) mediated low density lipoprotein (LDL) oxidation has been followed by the changes in absorbance at 234 nm and the emitted low level chemiluminescence (CL). The similarity of the time profiles allows us to conclude that the emitted CL is due to the decomposition of a transient product, most likely a hydroperoxide. Red wine, as well as its fractions, afford a noticeable protection when added prior to the start of the LDL oxidation process.

View Article and Find Full Text PDF

Oxidative modification of low-density lipoprotein (LDL) particles is a key event in the development of atherosclerosis. Oxidized LDL induces oxidative stress and modifies gene expression in endothelial cells. Berries constitute a rich dietary source of phenolic antioxidants.

View Article and Find Full Text PDF