Publications by authors named "Soleakhena Ken"

Background: One of the first clinical observations of ibrutinib activity in the treatment of chronic lymphocytic leukemia (CLL) is a rapid decline in lymph nodes size. This phenomenon is accompanied by an hyperlymphocytosis, either transient or prolonged, which is associated with distinct clinical responses and thus has an impact on long-term outcomes. Understanding which factors determine distinct disease courses upon ibrutinib treatment remains a scientific challenge.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM.

Methods: In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements.

View Article and Find Full Text PDF

Background: Hypofractionated stereotactic radiotherapy (hFSRT) is a salvage option for recurrent glioblastoma (GB) which may synergize anti-PDL1 treatment. This phase I study evaluated the safety and the recommended phase II dose of anti-PDL1 durvalumab combined with hFSRT in patients with recurrent GB.

Methods: Patients were treated with 24 Gy, 8 Gy per fraction on days 1, 3, and 5 combined with the first 1500 mg Durvalumab dose on day 5, followed by infusions q4weeks until progression or for a maximum of 12 months.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on glioblastoma, an aggressive brain tumor, and aims to differentiate its metabolic components to improve treatment and survival rates using proton MR spectroscopic imaging (MRSI).
  • Researchers analyzed MRSI data from 180 patients, applying clustering techniques to identify five metabolic clusters, with some showing abnormalities linked to progression-free survival (PFS).
  • Results indicate that specific clusters, particularly those with high lactate levels, can predict poorer outcomes, highlighting the importance of tumor metabolic profiling in treatment planning.
View Article and Find Full Text PDF

Background And Purpose: To investigate the feasibility of using a multiapproach analysis combining clinical data, diffusion- and perfusion-weighted imaging, and 3D magnetic resonance spectroscopic imaging to distinguish true tumor progression (TP) from pseudoprogression (PSP) in patients with glioblastoma.

Materials And Methods: Progression was suspected within 6 months of radiotherapy in 46 of the 180 patients included in the Phase-III SpectroGlio trial (NCT01507506). Choline/creatine (Cho/Cr), choline/N-acetyl aspartate (Cho/NAA) and lactate/N-acetyl aspartate (Lac/NAA) ratios were extracted.

View Article and Find Full Text PDF

In this study, a radiomics analysis was conducted to provide insights into the differentiation of radionecrosis and tumor progression in multiparametric MRI in the context of a multicentric clinical trial. First, the sensitivity of radiomic features to the unwanted variability caused by different protocol settings was assessed for each modality. Then, the ability of image normalization and ComBat-based harmonization to reduce the scanner-related variability was evaluated.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis.

View Article and Find Full Text PDF

We propose a semi-automatic segmentation pipeline designed for longitudinal studies considering structures with large anatomical variability, where expert interactions are required for relevant segmentations. Our pipeline builds on the regularized Fast Marching (rFM) segmentation approach by Risser(2018). It consists in transporting baseline multi-label FM seeds on follow-up images, selecting the relevant ones and finally performing the rFM approach.

View Article and Find Full Text PDF

The INTRABEAM Carl Zeiss Surgical system (Oberkochen, Germany) is a miniature accelerator producing low energy photons (50 keV maximum). The published dosimetric characterization of the INTRABEAM was based on detectors (radiochromic films or ionization chambers) not allowing measuring the absorbed dose in the first millimeters of the irradiated medium, where the dose is actually prescribed. This study aims at determining with Magnetic Resonance Imaging (MRI) the sensitivity of a paramagnetic gel in order to measure the dose deposit produced with the INTRABEAM from 0 to 20 mm.

View Article and Find Full Text PDF

This publication is a resume of the GOCO Congress (Montpellier 2017). A part of this congress was about the use of MRI in clinical practice, focused on the oncology field. The role of this tool was described in diagnosis, staging of tumors, evaluation of treatment response and the future use in prognostic and investigation (radiomics).

View Article and Find Full Text PDF

Background: Glioblastoma, a high-grade glial infiltrating tumor, is the most frequent malignant brain tumor in adults and carries a dismal prognosis. External beam radiotherapy (EBRT) increases overall survival but this is still low due to local relapses, mostly occurring in the irradiation field. As the ratio of spectra of choline/N acetyl aspartate> 2 (CNR2) on MR spectroscopic imaging has been described as predictive for the site of local relapse, we hypothesized that dose escalation on these regions would increase local control and hence global survival.

View Article and Find Full Text PDF

Purpose: To present the feasibility study of optimal dose coverage in ultra-focal brachytherapy (UFB) with multiparametric MRI for low- and intermediate-risk prostate cancer.

Methods And Materials: UFB provisional dose plans for small target volumes (<7 cc) were calculated on a prostate training phantom to optimize the seeds number and strength. Clinical UFB consisted in a contour-based nonrigid registration (MRI/Ultrasound) to implant a fiducial marker at the location of the tumor focus.

View Article and Find Full Text PDF

Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive technique able to provide the spatial distribution of relevant biochemical compounds commonly used as biomarkers of disease. Information provided by MRSI can be used as a valuable insight for the diagnosis, treatment and follow-up of several diseases such as cancer or neurological disorders. Obtaining accurate metabolite concentrations from in vivo MRSI signals is a crucial requirement for the clinical utility of this technique.

View Article and Find Full Text PDF

Intensity-modulated radiation therapy (IMRT) for total body irradiation (TBI) is practiced in several centers using the TomoTherapy System. In this context the planning target volume (PTV) is the entire body including the skin. A safety margin in the air surrounding the body should be added to take into account setup errors.

View Article and Find Full Text PDF

Purpose: To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI).

View Article and Find Full Text PDF

We previously showed that the farnesyl transferase inihibitor, Tipifarnib induced vascularization normalization, oxygenation and radiosensitization in a pre-clinical glioblastoma (GBM) model. The aim of this study was to assess by dynamic-susceptibility-contrast MRI (DSC-MRI) the effect of radiotherapy (RT) and Tipifarnib combination on tumor perfusion in GBM patients. Eighteen patients with newly diagnosed GBM, enrolled in a phase I-II clinical trial associating RT with Tipifarnib, underwent anatomical MR imaging and DSC-MRI before (M0) and two months after treatment (M2).

View Article and Find Full Text PDF

Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-(1)H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM).

Methods And Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse.

View Article and Find Full Text PDF

Magnetic resonance spectroscopy imaging (MRSI) is a powerful non-invasive tool for characterising markers of biological processes. This technique extends conventional MRI by providing an additional dimension of spectral information describing the abnormal presence or concentration of metabolites of interest. Unfortunately, in vivo MRSI suffers from poor signal-to-noise ratio limiting its clinical use for treatment purposes.

View Article and Find Full Text PDF

Background: To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT).

Methods: For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) techniques are based on the assumption that changes in neural activity are accompanied by modulation in the blood-oxygenation-level-dependent (BOLD) signal. In addition to conventional increases in BOLD signals, sustained negative BOLD signal changes are occasionally observed in many fMRI experiments, which show regions of cortex that seem to respond in antiphase with primary stimulus. The existence of this so-called negative BOLD response (NBR) has been observed and investigated in many functional studies.

View Article and Find Full Text PDF

Patients with drug-resistant focal epilepsy may require intracranial investigations with subdural electrodes. These must be correctly localized with respect to the brain cortical surface and require appropriate monitoring. For this purpose, coregistration techniques, which fuse preimplantation 3D magnetic resonance imaging scans with postimplantation computed tomography scans, have been implemented.

View Article and Find Full Text PDF

The aim of the present study was to analyze blood oxygenation level-dependent (BOLD) signal variation during an apnea-based task in order to assess the capability of a functional magnetic resonance imaging (fMRI) procedure to estimate cerebral vascular dynamic effects. We measured BOLD contrast by hierarchical cluster analysis in healthy subjects undergoing an fMRI experiment, in which the task paradigm was one phase of inspirational apnea (IA). By processing the time courses of the fMRI experiment, analysis was performed only on a subclass of all the possible signal patterns; basically, root mean square and absolute variation differences have been calculated.

View Article and Find Full Text PDF