In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L.
View Article and Find Full Text PDFFermentative processes by lactic acid bacteria can produce metabolites of interest to the health and food industries. Two examples are the production of B-group vitamins, and of prebiotic and immunomodulatory dextran-type exopolysaccharides. In this study, three riboflavin- and dextran-producing strains (BAL3C-5, BAL3C-7 and BAL3C-22) were used to develop a new method for selection and isolation of spontaneous riboflavin-overproducing mutants.
View Article and Find Full Text PDFDNA replication is essential to all living organisms as it ensures the fidelity of genetic material for the next generation of dividing cells. One of the simplest replication initiation mechanisms is the rolling circle replication. In the streptococcal plasmid pMV158, which confers antibiotic resistance to tetracycline, replication initiation is catalysed by RepB protein.
View Article and Find Full Text PDFThis work describes a method for deriving riboflavin overproducing strains of by exposing three strains (BAL3C-5, BAL3C-7, and BAL3C-22) isolated from dough to increasing concentrations of roseoflavin. By this procedure, we selected one mutant overproducing strain from each parental strain (BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2, respectively). Quantification of dextran and riboflavin produced by the parental and mutant strains in a defined medium lacking riboflavin and polysaccharides confirmed that riboflavin was only overproduced by the mutant strains, whereas dextran production was similar in both mutant and parental strains.
View Article and Find Full Text PDFManufacturing of probiotics and functional foods using lactic acid bacteria (LAB) that overproduce vitamin B has gained growing interest due to ariboflavinosis problems affecting populations of both developing and affluent countries. Two isogenic Lactiplantibacillus plantarum strains, namely a riboflavin-producing parental strain (UFG9) and a roseoflavin-resistant strain (B2) that carries a mutation in the FMN-aptamer of the potential rib operon riboswitch, were analysed for production and intra- and extracellular accumulation of flavins, as well as for regulation of the rib operon expression. Strain B2 accumulated in the medium one of the highest levels of riboflavin+FMN ever reported for LAB, exceeding by ~ 25 times those accumulated by UFG9.
View Article and Find Full Text PDFFront Mol Biosci
March 2021
Plasmid vectors constitute a valuable tool for homologous and heterologous gene expression, for characterization of promoter and regulatory regions, and for genetic manipulation and labeling of bacteria. During the last years, a series of vectors based on promiscuous replicons of the pMV158 family have been developed for their employment in a variety of Gram-positive bacteria and proved to be useful for all above applications in lactic acid bacteria. A proper use of the plasmid vectors requires detailed knowledge of their main replicative features under the changing growth conditions of the studied bacteria, such as the acidification of the culture medium by lactic acid production.
View Article and Find Full Text PDFRiboflavin (vitamin B) is a vitamin of the B group involved in essential biological pathways, including redox reactions and the electron transport chain. Some lactic acid bacteria (LAB) can synthesize riboflavin and this capability is strain-dependent. In the last years, a growing interest has focused on the selection of riboflavin-overproducing food-grade LAB for the vitamin biofortification of fermented foods, as well as for the formulation of innovative functional products.
View Article and Find Full Text PDFListeria monocytogenes can form long-lasting biofilms on food-contact surfaces. Lactic acid bacteria (LAB) have shown promise in antagonizing this microorganism in liquid media. However, the ecological relationships differ when cells are forming biofilms.
View Article and Find Full Text PDFPcrA abrogates replication-transcription conflicts and disrupts RecA nucleoprotein filaments . Inactivation of is lethal. We show that PcrA depletion lethality is suppressed by (involved in end resection), (the recombinase), or (transcription-coupled repair) inactivation, but not by inactivating end resection ( or ), positive and negative RecA modulators ( or and ), or genes involved in the reactivation of a stalled RNA polymerase (2, , and ).
View Article and Find Full Text PDFVopr Kurortol Fizioter Lech Fiz Kult
May 2020
A study of the changes in psychophysical function of the human body before and after relaxation sessions and acupuncture application has been conducted. The impact of relaxation sessions on psychophysical performance was studied on a group of university students and postgraduates aged between 18 and 30 years old; the impact of an acupuncture session course - on a group of subjects of a broad age range between 14 and 72, as they underwent rehabilitation therapy for their supportive locomotive apparatus disorders. The recording techniques used included electroencephalography (EEG), psychomotor reaction recording, minute-long time span accuracy reproduction; TST technique (Tactile Solar Test) of meridian and microsystem examination The results of this study suggest that relaxation sessions contribute to the enhancement of neurodynamical performance and mental activity efficiency.
View Article and Find Full Text PDFFront Microbiol
June 2019
Labeling of bacterial cells with fluorescent proteins allows tracking the bacteria in competition and interactomic and studies. During the last years, a few plasmid vectors have been developed aimed at the fluorescent labeling of specific members of the lactic acid bacteria (LAB), a heterogeneous group that includes microorganisms used in the food industry, as probiotics, or as live vectors for mucosal vaccines. Successful and versatile labeling of a broad range of LAB not only requires a vector containing a promiscuous replicon and a widely recognized expression system for the constitutive or regulated expression of the fluorescence determinant, but also the knowledge of the main features of the entire plasmid/host/fluorescent protein ensemble.
View Article and Find Full Text PDFAlthough differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of .
View Article and Find Full Text PDFThe exopolysaccharide synthesized by MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the gene, which encodes the dextransucrase involved in dextran synthesis.
View Article and Find Full Text PDFPlasmids are a main factor for the evolution of bacteria through horizontal gene exchange, including the dissemination of pathogenicity genes, resistance to antibiotics and degradation of pollutants. Their capacity to duplicate is dependent on their replication determinants (replicon), which also define their bacterial host range and the inability to coexist with related replicons. We characterize a second replicon from the virulence plasmid pPsv48C, from pv.
View Article and Find Full Text PDFInitiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin () of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities.
View Article and Find Full Text PDFDNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography.
View Article and Find Full Text PDFRolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication.
View Article and Find Full Text PDFPlasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis.
View Article and Find Full Text PDFAntisense RNAII is a replication control element encoded by promiscuous plasmid pMV158. RNAII binds to its complementary sequence in the copG-repB mRNA, thus inhibiting translation of the replication initiator repB gene. In order to initiate the biochemical characterization of the pMV158 antisense RNA-mediated control system, conditions for in vitro transcription by T7RNA polymerase were set up that yielded large amounts of antisense and target run-off products able to bind to each other.
View Article and Find Full Text PDFRepB is the pMV158-encoded protein that initiates rolling-circle replication of this promiscuous plasmid. Availability of RepB is rate-limiting for the plasmid replication process, and therefore the repB gene encoding the protein is subjected to strict control. Two trans-acting plasmid elements, CopG and the antisense RNAII, are involved in controlling the synthesis of the initiator at the transcriptional and translational level, respectively.
View Article and Find Full Text PDFPromiscuous, rolling-circle replication plasmid pMV158 determines tetracycline resistance to its host and can be mobilized by conjugation. Plasmid pLS1 is a deletion derivative of pMV158 that has lost its conjugative mobilization ability. Both plasmids replicate efficiently and are stably inherited in Streptococcus pneumoniae.
View Article and Find Full Text PDFWe report the construction of a plasmid vector designed for regulated gene expression in Streptococcus pneumoniae. The new vector, pLS1ROM, is based on the replicon of the streptococcal promiscuous rolling circle replication (RCR) plasmid pMV158. We inserted the controllable promoter P(M) of the S.
View Article and Find Full Text PDFObjective: To assess the association of single-nucleotide polymorphisms (SNPs) in genes codifying for antioxidant enzymes to blood pressure (BP) values and risk of hypertension.
Methods: Population-based study including 1388 participants (704 women) older than 18 years in which 300 were untreated hypertensive patients. In 335 untreated hypertensive patients referred to one hypertension clinic, the study was replicated.
AtzR is a LysR-type regulator responsible for activation of the cyanuric acid utilization operon atzDEF. AtzR binds the PatzDEF promoter region at a strong recognition element, designated the repressor binding site, and a weaker binding determinant, the activator binding site (ABS). AtzR activates transcription in response to two dissimilar signals, nitrogen limitation and cyanuric acid.
View Article and Find Full Text PDFReplication of the promiscuous plasmid pMV158 requires expression of the initiator repB gene, which is controlled by the repressor CopG. Genes repB and copG are co-transcribed from promoter P(cr). We have studied the interactions between RNA polymerase, CopG and the promoter to elucidate the mechanism of repression by CopG.
View Article and Find Full Text PDF