Publications by authors named "Solange Miele"

Article Synopsis
  • - Scientists are exploring the use of CRISPR-Cas systems as targeted antimicrobials against bacterial infections, particularly focusing on multidrug-resistant strains of Klebsiella pneumoniae.
  • - The study found that DNA-targeting Cas nucleases were more effective than RNA-targeting ones, with AsCas12a showing promising results, although different guide RNAs had varying effectiveness based on strain-specific factors.
  • - A genome-wide screen identified design rules for guide RNAs and helped develop an algorithm to predict their efficiency, ultimately demonstrating that Cas12a can be used in phagemids to eliminate K. pneumoniae.
View Article and Find Full Text PDF

The is a family of anaerobic bacteria in the class Clostridia with potential to advance the bio-economy and intestinal therapeutics. Some species of metabolize abundant, low-cost feedstocks such as lignocellulose and carbon dioxide into value-added chemicals. Others are among the dominant species of the human colon and animal rumen, where they ferment dietary fiber to promote healthy gut and immune function.

View Article and Find Full Text PDF

The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions.

View Article and Find Full Text PDF

Bacteria carry diverse genetic systems to defend against viral infection, some of which are found within prophages where they inhibit competing viruses. Phage satellites pose additional pressures on phages by hijacking key viral elements to their own benefit. Here, we show that E.

View Article and Find Full Text PDF

The circular chromosomes of bacteria can be concatenated into dimers by homologous recombination. Dimers are solved by the addition of a cross-over at a specific chromosomal site, , by 2 related tyrosine recombinases, XerC and XerD. Each enzyme catalyzes the exchange of a specific pair of strands.

View Article and Find Full Text PDF

To understand the mechanism of replication used by baculoviruses, it is essential to describe all the factors involved, including virus and host proteins and the sequences where DNA synthesis starts. A lot of work on this topic has been done, but there is still confusion in defining what sequence/s act in such functions, and the mechanism of replication is not very well understood. In this work, we performed an AgMNPV replication kinetics into the susceptible UFL-Ag-286 cells to estimate viral genome synthesis rates.

View Article and Find Full Text PDF

In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance.

View Article and Find Full Text PDF

In this study, petrochemical wastewater from the port of Antwerp was used for the development of aerobic granular sludge. Two different reactor setups were used, (1) a completely aerated sequencing batch reactor (SBR) with a feast/famine regime and (2) a sequencing batch reactor operated with an anaerobic feast/aerobic famine strategy (SBR). The seed sludge showed poor settling characteristics with a sludge volume index (SVI) of 285mL.

View Article and Find Full Text PDF

In this study nitrogen removal via nitrite >80% was achieved after approximately 80days in a sequencing batch reactor (SBR) treating pre-treated industrial wastewater originating from the potato industry. Thereafter, SBR performance was investigated during the formation of aerobic nitrite granules (ANG). The first granules appeared after 26days leading to full granulation after 64days.

View Article and Find Full Text PDF

The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology.

View Article and Find Full Text PDF

The mosquito iridescent viruses (MIVs) are large icosahedral DNA viruses that replicate and assemble in the cytoplasm of the host. Paracrystalline arrangements of virions that accumulate in the cytoplasm produce an iridescent color that is symptomatic of acute infections. In August 2010, we found larvae of Culex pipiens with these symptoms in suburban ditches around the city of La Plata, Argentina.

View Article and Find Full Text PDF

The Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp. In this study, genome sequences from 57 baculoviruses were analyzed to reevaluate the number and identity of core genes and to understand the distribution of the remaining coding sequences. Thirty one core genes with orthologs in all genomes were identified along with other 895 genes differing in their degrees of representation among reported genomes.

View Article and Find Full Text PDF