Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite , is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat infection, mostly based on drug repurposing and combination therapies.
View Article and Find Full Text PDF-Quinones represent a special class of redox active compounds associated with a spectrum of pronounced biological activities, including selective cytotoxicity and antimicrobial actions. The modification of the quinone ring by simple nitrogen and sulphur substitutions leads to several new classes of compounds with their own, distinct redox behaviour and equally distinct activities against cancer cell lines and . Some of the compounds investigated show activity against at concentrations of 24.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2021
Chagas disease is a neglected illness endemic in Latin America that mainly affects rural populations. The etiological agent of Chagas disease is the protozoan Trypanosoma cruzi, which has three different parasite stages and a dixenous life cycle that includes colonization of the vertebrate and invertebrate hosts. During its life cycle, T.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
March 2020
Background: Chagas disease, which is caused by the protozoan Trypanosoma cruzi, is endemic to Latin America and mainly affects low-income populations. Chemotherapy is based on two nitrocompounds, but their reduced efficacy encourages the continuous search for alternative drugs. Our group has characterised the trypanocidal effect of naphthoquinones and their derivatives, with naphthoimidazoles derived from β-lapachone (N1, N2 and N3) being the most active in vitro.
View Article and Find Full Text PDFBackground: Near to 5-7 million people are infected with T. cruzi in the world, and about 10,000 people per year die of problems associated with this disease.
Methods: Herein, the synthesis, antitrypanosomal and antimycobacterial activities of seventeen coumarinic N-acylhydrazonic derivatives have been reported.
Background: Approximately, 5-7 million people are infected with T. cruzi in the world, and approximately 10,000 people per year die of complications linked to this disease.
Methods: This work describes the construction of a new family of hidrazonoyl substituted derivatives, structurally designed exploring the molecular hybridization between megazol and nitrofurazone.
Naphthoquinones are of key importance in organic synthesis and medicinal chemistry. In the last few years, various synthetic routes have been developed to prepare bioactive compounds derived or based on lapachones. In this sense, this review is mainly focused on the synthetic aspects and strategies used for the design of these compounds on the basis of their biological activities for the development of drugs against the neglected diseases leishmaniases and Chagas disease and also cancer.
View Article and Find Full Text PDFBackground: Only benznidazole (Bnz) (1) and nifurtimox (Nfx) (2) are licensed for the treatment of Chagas disease although their safety and efficacy profile are far from ideal. Farmanguinhos from Fiocruz has developed seven nitroimidazole compounds (4-10) analogs of megazol (3).
Objectives: To evaluate whether the genotoxic effect of 3 was abolished in the seven nitroimidazoles (4-10) analogs using the in vitro alkaline comet assay (CA) and the in vitro cytokinesis-block micronucleus assay (CBMN) in whole human blood cells (WHBC) and correlate this effect with their trypanocidal activity using bloodstream trypomastigote forms of Trypanosoma cruzi.
Background: Although several research efforts have been made worldwide to discover novel drug candidates for the treatment of Chagas disease, the nitroimidazole drug benznidazol remains the only therapeutic alternative in the control of this disease. However, this drug presents reduced efficacy in the chronic form of the disease and limited safety after long periods of administration, making it necessary to search for new, more potent and safe prototypes.
Objective: We described herein the synthesis and the trypanocidalaction of new functionalized carbohydrazonamides (2-10) against trypomastigote forms of Trypanosoma cruzi.
Eur J Med Chem
August 2017
Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC/24 h values of less than 2 μM.
View Article and Find Full Text PDFThe QSAR study of 34 2-aryl-naphthoimidazoles screened so far revealed that is the most important factor for their lytic activity on the bloodstream trypomastigote forms of , the etiologic agent of Chagas disease. Based on this result, 16 new -alkyl-naphthoimidazoles derived from 6,6-dimethyl-3,4,5,6-tetrahydrobenzo[7,8]chromene[5,6-]imidazole (the product of the reaction of β-lapachone with paraformaldehyde) by its reaction with halo-alkanes were prepared and evaluated against the parasite and peritoneal macrophages. The 1--hexyl and 3--hexyl naphthoimidazoles were 2.
View Article and Find Full Text PDFChagas disease, caused by Trypanosoma cruzi, stands out due to its socio-economic effects on low-income tropical populations. This disease affects millions of people worldwide. The current chemotherapy for it is based on benznidazole (Bz) and nifurtimox (Nif) and is unsatisfactory.
View Article and Find Full Text PDFIn this review, we intend to provide a general view of the evolution of experimental studies in the area of chemotherapy for Chagas disease. We can follow the process of drug development through three phases. The first phase began almost at the same time as the discovery made by Carlos Chagas and proceeds to 1970, during which time an extensive list of compounds was subjected to preclinical and clinical trials.
View Article and Find Full Text PDFUntil now, there has been neither an agreed-upon experimental model nor descriptors of the clinical symptoms that occur over the course of acute murine infection. The aim of this work is to use noninvasive methods to evaluate clinical signs in Swiss Webster mice that were experimentally infected with the Y strain of Trypanosoma cruzi during acute phase (Inf group). Infected mice showed evident clinical changes beginning in the second week of infection (wpi) when compared to the noninfected group (NI): (1) animals in hunched postures, closed eyes, lowered ears, peeling skin, increased piloerection, prostration, and social isolation; (2) significant decrease in body weight (Inf: 26.
View Article and Find Full Text PDFWe report herein a straightforward and efficient one-step reaction to prepare new nor-β-lapachone derivatives tethered with phenylthio groups at position 3 of the furan ring. We have screened the compounds on bloodstream trypomastigotes of Trypanosoma cruzi, the causative agent of Chagas disease, aimed at finding a new prototype with high trypanocidal activity. The new compounds possess a broad range of activity (IC50/24h from 9.
View Article and Find Full Text PDFNitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated.
View Article and Find Full Text PDFThe pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
June 2014
Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T.
View Article and Find Full Text PDFThe available treatment for the prevention and cure of Chagas disease, caused by the protozoan Trypanosoma cruzi, is still unsatisfactory. Thus, there is an urgent need to develop new drugs. In the last few years, our research group has focused on finding a new chemical entity able to target the infectious bloodstream trypomastigotes.
View Article and Find Full Text PDFNaphthoquinoidal compounds are of great interest in medicinal chemistry. In recent years, several synthetic routes have been developed to obtain bioactive molecules derived from lapachones. In this mini-review, we focus on the synthetic aspects and strategies used to design these compounds and on the biological activities of these substances for the development of drugs against the neglected diseases leishmaniasis and Chagas disease as well as malaria, tuberculosis and cancer.
View Article and Find Full Text PDFIn our continued search for novel trypanocidal compounds, twenty-six derivatives of para- and ortho-naphthoquinones coupled to 1,2,3-triazoles were synthesized. These compounds were evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease. Compounds 17-24, 28-30 and 36-38 are described herein for the first time.
View Article and Find Full Text PDFBackground: Naphthoquinones (NQs) are privileged structures in medicinal chemistry due to the biological effects associated with the induction of oxidative stress. The present study evaluated the activities of sixteen NQs derivatives on Trypanosoma cruzi.
Results: Fourteen NQs displayed higher activity against bloodstream trypomastigotes of T.
Herein, we report the design, synthesis and trypanocidal activity of some novel trisubstituted imidazole derivatives. These heterocyclic derivatives were structurally planned by exploring the concept of molecular hybridisation between two arylhydrazones derived from megazol, which has potent trypanocidal activity. The trypanocidal activity of these triarylimidazole derivatives was evaluated against infective trypomastigote forms of T.
View Article and Find Full Text PDFWe report herein the synthesis and trypanocidal profile of new (E)-cinnamic N-acylhydrazones (NAHs) designed by exploiting molecular hybridization between the potent cruzain inhibitors (E)-1-(benzo[d][1,3]dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide. These derivatives were evaluated against both amastigote and trypomastigote forms of Trypanosoma cruzi and lead us to identify two compounds that were approximately two times more active than the reference drug, benznidazole, and with good cytotoxic index. Although designed as cruzain inhibitors, the weak potency displayed by the best cinnamyl NAH derivatives indicated that another mechanism of action was likely responsible for their trypanocide action.
View Article and Find Full Text PDFEur J Med Chem
June 2012
Five 2-hydroxy-3-substituted-aminomethyl naphthoquinones, nine 1,2,3-triazolic para-naphthoquinones, five nor-β-lapachone-based 1,2,3-triazoles, and several other naphthoquinonoid compounds were synthesized and evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease, continuing our screening program for new trypanocidal compounds. Among all the substances, 16-18, 23, 25-29 and 30-33 were herein described for the first time and fifteen substances were identified as more potent than the standard drug benznidazole, with IC(50)/24h values in the range of 10.9-101.
View Article and Find Full Text PDF