Publications by authors named "Solange A Sagio"

Gene expression through RT-qPCR can be performed by the relative quantification method, which requires the expression normalization through reference genes. Therefore, it is essential to validate, experimentally, the candidate reference genes. Thus, although there are several studies that are performed to identify the most stable reference genes, most them validate genes for very specific conditions, not exploring the whole potential of the research since not all possible combinations of treatments and/or conditions of the study are explored.

View Article and Find Full Text PDF

Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis.

View Article and Find Full Text PDF

Isolating high quality RNA is a limiting factor in molecular analysis, since it is the base for transcriptional studies. The RNA extraction method can directly affect the RNA quality and quantity, as well as, its overall cost. The industrial importance of the yeast genus Candida in several sectors comes from their capacity to produce Lipases.

View Article and Find Full Text PDF

Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development.

View Article and Find Full Text PDF

The plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening.

View Article and Find Full Text PDF