Publications by authors named "Sol-Fernandez S"

The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems.

View Article and Find Full Text PDF
Article Synopsis
  • - Nanotechnology in agriculture shows promise but faces challenges like high costs and limited understanding of how engineered nanomaterials interact with plants.
  • - A study on the use of iron oxide magnetic nanoparticles (MNPs) for seed priming in pepper seeds revealed significant improvements in plant growth compared to traditional seed treatments.
  • - The research also indicated extensive changes at the genetic level, with over 2,200 genes related to plant growth and defense being activated, suggesting that MNPs not only enhance physical growth but also prepare plants for environmental stress.
View Article and Find Full Text PDF

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M) complex and polyethylene glycol (PEG) molecules.

View Article and Find Full Text PDF

During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for applications because they can penetrate deep into tissues, as opposed to light.

View Article and Find Full Text PDF

Herein, novel rodlike CdTe@MPA-PDA particles based on polydopamine (PDA) loaded with CdTe quantum dots (QDs) capped with mercaptopropionic acid (CdTe@MPA QDs) with atypical chemical features are evaluated as a potential actuator for photothermal therapy and oxidative stress induction. Under mild conditions established for the safe and efficient use of lasers, temperature increases of 10.2 and 7.

View Article and Find Full Text PDF

Despite the potential of magnetic nanoparticles (NPs) to mediate intracellular hyperthermia when exposed to an alternating magnetic field (AMF), several studies indicate that the intracellular heating capacity of magnetic NPs depends on factors such as cytoplasm viscosity, nanoparticle aggregation within subcellular compartments, and dipolar interactions. In this work, we report the design and synthesis of monodispersed flowerlike superparamagnetic manganese iron oxide NPs with maximized SAR (specific absorption rate) and evaluate their efficacy as intracellular heaters in the human tumor-derived glioblastoma cell line U87MG. Three main strategies to tune the particle anisotropy of the core and the surface to reach the maximum heating efficiency were adopted: (1) varying the crystalline anisotropy by inserting a low amount of Mn in the inverse spinel structure, (2) varying the NP shape to add an additional anisotropy source while keeping the superparamagnetic behavior, and (3) maximizing NP-cell affinity through conjugation with a biological targeting molecule to reach the NP concentration required to increase the temperature within the cell.

View Article and Find Full Text PDF

Thermoluminescence (TL) characteristics for LiF:Mg, Cu, P, and CaSO4:Dy under the homogeneous field of X-ray beams of diagnostic irradiation and its verification using thermoluminescence dosimetry are presented. The irradiation were performed utilizing a conventional X-ray equipment installed at the Hospital Juárez Norte of México. Different thermoluminescence characteristics of two material were studied, such as batch homogeneity, glow curve, linearity, detection threshold, reproducibility, relative sensitivity and fading.

View Article and Find Full Text PDF

The response of TLD-100, CaSO4:Dy and LiF:Mg,Cu,P for a range of X-ray low dose was measured. For calibration, the TLDs were arranged at the center of the X-ray field. The dose output of the X-ray machine was determined using an ACCU-Gold.

View Article and Find Full Text PDF