Publications by authors named "Sol P"

COVID-19 represents a serious threat to mental health worldwide. The aim of this study is to identify changes in adolescent psychiatry treatment demand in a tertiary hospital in Madrid during the first month (March 11 to April 11) after the pandemic declaration by the World Health Organization (WHO). We hypothesized that fear of contagion within COVID-19 may deter people from asking for psychiatric care.

View Article and Find Full Text PDF

Three-dimensional (3D)-printed polycaprolactone (PCL)-based scaffolds have been extensively proposed for Tissue Engineering (TE) applications. Currently, the majority of the scaffolds produced are not representative of the complex arrangement of natural structures, since the internal morphologies follow an orthogonal and regular pattern. In order to produce scaffolds that more closely replicate the structure of the extracellular matrix (ECM) of tissues, herein both circular and sinusoidal scaffolds were fabricated and compared to their conventional orthogonal counterparts.

View Article and Find Full Text PDF

To understand the role of chitosan in chitosan-poly(butylene succinate) scaffolds (50% wt), 50%, 25%, and 0% of chitosan were used to produce different scaffolds. These scaffolds were in vitro seeded and cultured with human bone marrow stromal cells in osteogenic conditions, revealing that higher percentage of chitosan showed enhanced cell viability over time, adhesion, proliferation, and osteogenic differentiation. Scaffolds were also implanted in cranial defects and iliac submuscular region in Wistar rats, and the results evidenced that chitosan-containing scaffolds displayed mild inflammatory response and good integration with surrounding tissues, showed by connective tissue colonization and the presence of new blood vessels.

View Article and Find Full Text PDF

Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors.

View Article and Find Full Text PDF

A 7-year-old girl treated with peritoneal dialysis developed a peritonitis due to Pasteurella multocida after physical contact of the domestic cat with the dialysis machine. Only 25 of such cases have been reported, mostly concerning adults. We report the third case involving a child, together with a literature review.

View Article and Find Full Text PDF

Native articular cartilage is subjected to synovial fluid flow during normal joint function. Thus, it is believed that the morphogenesis of articular cartilage may be positively regulated by the application of similar stimulation in vitro. In the present study, the effect of fluid flow over the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) was investigated.

View Article and Find Full Text PDF

Tissue engineering sustains the need of a three-dimensional (3D) scaffold to promote the regeneration of tissues in volume. Usually, scaffolds are seeded with an adequate cell population, allowing their growth and maturation upon implantation in vivo. Previous studies obtained by our group evidenced significant growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded and cultured on melt-based porous chitosan fibre mesh scaffolds (cell constructs).

View Article and Find Full Text PDF

We report the production of chitosan-based fibers and chitosan fiber-mesh structures by melt processing (solvent-free) to be used as tissue-engineering scaffolds. The melt-based approach used to produce the scaffolds does not change their main characteristics, including the surface roughness and microporosity. The porosity, pore size, interconnectivity and mechanical performance of the scaffolds are all within the range required for various tissue-engineering applications.

View Article and Find Full Text PDF

Novel chitosan/polybutylene succinate fibre-based scaffolds (C-PBS) were seeded with bovine articular chondrocytes in order to assess their suitability for cartilage tissue engineering. Chondrocytes were seeded onto C-PBS scaffolds using spinner flasks under dynamic conditions, and cultured under orbital rotation for a total of 6 weeks. Non-woven polyglycolic acid (PGA) felts were used as reference materials.

View Article and Find Full Text PDF

Naturally derived polymers have been extensively used in scaffold production for cartilage tissue engineering. The present work aims to evaluate and characterize extracellular matrix (ECM) formation in two types of chitosan-based scaffolds, using bovine articular chondrocytes (BACs). The influence of these scaffolds' porosity, as well as pore size and geometry, on the formation of cartilagineous tissue was studied.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded onto new biodegradable chitosan/polyester scaffolds. Scaffolds were obtained by melt blending chitosan with poly(butylene succinate) in a proportion of 50% (wt) each and further used to produce a fiber mesh scaffold. hBMSCs were seeded on those structures and cultured for 3 weeks under osteogenic conditions.

View Article and Find Full Text PDF

The aim of the present work was to study the biological behavior of a mouse mesenchymal stem cell line when seeded and cultured under osteogenic conditions onto novel processed melt-based chitosan scaffolds. Scaffolds were produced by compression molding, followed by salt leaching. Scanning electron microscopy (SEM) observations and microCT analysis showed the pore sizes ranging between 250 and 500 microm and the interconnectivity of the porous structure.

View Article and Find Full Text PDF

In this work, scaffolds derived from a new biomaterial originated from the combination of a natural material and a synthetic material were tested for assessing their suitability for cartilage tissue engineering applications. In order to obtain a better outcome result in terms of scaffolds' overall properties, different blends of natural and synthetic materials were created. Chitosan and polybutylene succinate (C-PBS) 50/50 (wt%) were melt blended using a twin-screw extruder and processed into 5 x 5 x 5 mm scaffolds by compression moulding with salt leaching.

View Article and Find Full Text PDF

Development of overweight and physical activity during life was studied retrospectively in a group of physically active and a group of sedentary elderly women. The two groups of elderly women were selected based on a validated physical activity questionnaire. A previous study on their current dietary intake and nutritional status showed a 12 kg higher body weight in the sedentary group compared to the physically active group, whereas body height did not differ.

View Article and Find Full Text PDF