Publications by authors named "Sol M Rivera"

Background: Mycophenolate mofetil (MMF) is an immunosuppressant used in human and veterinary medicine. Little pharmacokinetic and pharmacodynamic information on MMF is available in cats.

Objective: To evaluate the plasma disposition of mycophenolic acid (MPA) and assess its effect on total peripheral blood mononuclear cells and CD4 /CD8 ratios after PO administration of MMF.

View Article and Find Full Text PDF

Cats and dogs can suffer from multiple autoimmune diseases. Mycophenolic acid (MPA) is a potentially useful immunosuppressant drug in cats and dogs, because of its well-documented efficacy in controlling autoimmune disease in humans. However, the pharmacokinetics and pharmacodynamics in these species remain to be determined.

View Article and Find Full Text PDF

Rice endosperm is devoid of carotenoids because the initial biosynthetic steps are absent. The early carotenogenesis reactions were constituted through co-transformation of endosperm-derived rice callus with phytoene synthase and phytoene desaturase transgenes. Subsequent steps in the pathway such as cyclization and hydroxylation reactions were catalyzed by endogenous rice enzymes in the endosperm.

View Article and Find Full Text PDF

We have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well-characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized β-carotene ketolase gene optimized for maize codon usage, and a wild-type Arabidopsis thaliana ortholog of the cauliflower Orange gene.

View Article and Find Full Text PDF

The present review compiles positive MS fragmentation data of selected carotenoids obtained using various ionization techniques and matrices. In addition, new experimental data from the analysis of carotenoids in transgenic maize and rice callus are provided. Several carotenes and oxygen-functionalized carotenoids containing epoxy, hydroxyl, and ketone groups were ionized by atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry (MS/MS) in positive ion mode.

View Article and Find Full Text PDF

A fast method was developed to determine carotenoid content in transgenic maize seeds. The analysis was carried out using an ultrahigh-pressure liquid chromatograph coupled to a photodiode array detector and a mass spectrometer (UHPLC-PDA-MS/MS). Sixteen carotenoid pigments were detected and quantified in <13 min.

View Article and Find Full Text PDF

Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies.

View Article and Find Full Text PDF

Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn.

View Article and Find Full Text PDF

The eight Millennium Development Goals (MDGs) are international development targets for the year 2015 that aim to achieve relative improvements in the standards of health, socioeconomic status and education in the world's poorest countries. Many of the challenges addressed by the MDGs reflect the direct or indirect consequences of subsistence agriculture in the developing world, and hence, plant biotechnology has an important role to play in helping to achieve MDG targets. In this opinion article, we discuss each of the MDGs in turn, provide examples to show how plant biotechnology may be able to accelerate progress towards the stated MDG objectives, and offer our opinion on the likelihood of such technology being implemented.

View Article and Find Full Text PDF