Micromachines (Basel)
August 2024
The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons.
View Article and Find Full Text PDFAlthough identifying cell names in dense image stacks is critical in analyzing functional whole-brain data enabling comparison across experiments, unbiased identification is very difficult, and relies heavily on researchers' experiences. Here, we present a probabilistic-graphical-model framework, CRF_ID, based on Conditional Random Fields, for unbiased and automated cell identification. CRF_ID focuses on maximizing intrinsic similarity between shapes.
View Article and Find Full Text PDFMechanotransduction channels have been proposed as force sensors in various physiological processes, such as hearing and touch. In particular, TMC1 has been shown to constitute the pore of hair cell mechanotransduction channels, but little is known about how force is sensed by TMC channels. Here, we identify UNC-44/ankyrin as an essential component of the TMC-1 mechanotransduction channel complex in the sensory cilia of Caenorhabditis elegans mechanoreceptor neurons.
View Article and Find Full Text PDFAnimals' perception and behavior involve integration of multiple sensory modalities. Caenorhabditis elegans is a useful model for studying multimodal sensory integration, as it has well-characterized neuronal circuits in a relatively simple nervous system. However, most studies based on functional imaging have only been conducted on single modal stimuli, because well-controlled multimodal experiments for C.
View Article and Find Full Text PDFNeurons convert synaptic or sensory inputs into cellular outputs. It is not well understood how a single neuron senses, processes multiple stimuli, and generates distinct neuronal outcomes. Here, we describe the mechanism by which the C.
View Article and Find Full Text PDFMechanosensation is fundamentally important for the abilities of an organism to experience touch, hear sounds, and maintain balance. Caenorhabditis elegans is a powerful system for studying mechanosensation as this worm is well suited for in vivo functional imaging of neurons. Many years of research using labor-intensive methods have generated a wealth of knowledge about mechanosensation in C.
View Article and Find Full Text PDFThe field-gradient, superficial photo fluidization of azomaterials allows a specific 3D nano-silhouette to be shaped over a large area, so as to get easy access to a 3D-tapered, deep sub-wavelength Au nanohole (20 nm spatial size) array. The squeezing of visible light into the deep sub-wavelength point and the relevant extraordinary optical transmission (EOT) are achieved using this 3D-tapered, 20 nm Au nanohole.
View Article and Find Full Text PDFThe Field-Gradient Effect extends the photofluidization of azobenzene materials to 3D, multi-level micro/nanotexturing with a newly conceptualized design strategy based on "field-gradient photofluidization". In particular, we successfully characterized the vertical gradient optical absorption within the azobenzene material and the resulting field-gradient photofluidization both theoretically and experimentally. Furthermore, we could create the heterogeneously integrated micro/nanotextures at any desired surface heights, capability that is potentially beneficial for plasmonic applications.
View Article and Find Full Text PDF