Mosquito-borne viruses are a growing global threat. Initial viral inoculation occurs in the skin via the mosquito 'bite', eliciting immune responses that shape the establishment of infection and pathogenesis. Here we assess the cutaneous innate and adaptive immune responses to controlled Aedes aegypti feedings in humans living in Aedes-endemic areas.
View Article and Find Full Text PDFSignificanceMetagenomic pathogen sequencing offers an unbiased approach to characterizing febrile illness. In resource-scarce settings with high biodiversity, it is critical to identify disease-causing pathogens in order to understand burden and to prioritize efforts for control. Here, metagenomic next-generation sequencing (mNGS) characterization of the pathogen landscape in Cambodia revealed diverse vector-borne and zoonotic pathogens irrespective of age and gender as risk factors.
View Article and Find Full Text PDFInhabitants of the Greater Mekong Subregion in Cambodia are exposed to pathogens that might influence serologic cross-reactivity with severe acute respiratory syndrome coronavirus 2. A prepandemic serosurvey of 528 malaria-infected persons demonstrated higher-than-expected positivity of nonneutralizing IgG to spike and receptor-binding domain antigens. These findings could affect interpretation of large-scale serosurveys.
View Article and Find Full Text PDFBackground: We established the first prospective cohort to understand how infection with dengue virus is influenced by vector-specific determinants such as humoral immunity to Aedes aegypti salivary proteins.
Methods: Children aged 2-9 years were enrolled in the PAGODAS (Pediatric Assessment Group of Dengue and Aedes Saliva) cohort with informed consent by their guardians. Children were followed semi-annually for antibodies to dengue and to proteins in Ae.
Unlabelled: Greater Mekong inhabitants are exposed to pathogens, zoonotic and otherwise, that may influence SARS-CoV-2 seroreactivity. A pre-pandemic (2005 to 2011) serosurvey of from 528 malaria-experienced Cambodians demonstrated higher-than-expected (up to 13.8 %) positivity of non-neutralizing IgG to SARS-CoV-2 spike and RBD antigens.
View Article and Find Full Text PDFBackground: Long regarded as an epicenter of drug-resistant malaria, Southeast Asia continues to provide new challenges to the control of Plasmodium falciparum malaria. Recently, resistance to the artemisinin combination therapy partner drug piperaquine has been observed in multiple locations across Southeast Asia. Genetic studies have identified single nucleotide polymorphisms as well as copy number variations in the plasmepsin 2 and plasmepsin 3 genes, which encode haemoglobin-degrading proteases that associate with clinical and in vitro piperaquine resistance.
View Article and Find Full Text PDFBackground: Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance.
Methods: In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries.
malaria incidence has increased in Latin America and Asia and is responsible for nearly 74.1% of malaria cases in Latin America. Immune responses to are less well characterized than those to , partly because is more difficult to cultivate in the laboratory.
View Article and Find Full Text PDFLancet Infect Dis
September 2019
Background: The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam.
View Article and Find Full Text PDFinvasion of reticulocytes relies on distinct receptor-ligand interactions between the parasite and host erythrocytes. Engagement of the highly polymorphic domain II of the Duffy-binding protein (DBPII) with the erythrocyte's Duffy Ag receptor for chemokines (DARC) is essential. Some -exposed individuals acquired Abs to DBPII that block DBPII-DARC interaction and inhibit reticulocyte invasion, and Ab levels correlate with protection against malaria.
View Article and Find Full Text PDFBackground: Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection.
View Article and Find Full Text PDFBackground: Antimalarial resistance is rapidly spreading across parts of southeast Asia where dihydroartemisinin-piperaquine is used as first-line treatment for Plasmodium falciparum malaria. The first published reports about resistance to antimalarial drugs came from western Cambodia in 2013. Here, we analyse genetic changes in the P falciparum population of western Cambodia in the 6 years before those reports.
View Article and Find Full Text PDFBackground: As the prevalence of artemisinin-resistant Plasmodium falciparum malaria increases in the Greater Mekong subregion, emerging resistance to partner drugs in artemisinin combination therapies seriously threatens global efforts to treat and eliminate this disease. Molecular markers that predict failure of artemisinin combination therapy are urgently needed to monitor the spread of partner drug resistance, and to recommend alternative treatments in southeast Asia and beyond.
Methods: We did a genome-wide association study of 297 P falciparum isolates from Cambodia to investigate the relationship of 11 630 exonic single-nucleotide polymorphisms (SNPs) and 43 copy number variations (CNVs) with in-vitro piperaquine 50% inhibitory concentrations (ICs), and tested whether these genetic variants are markers of treatment failure with dihydroartemisinin-piperaquine.
Background: Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite's ability to recognize and invade human erythrocytes.
View Article and Find Full Text PDFBackground: Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia.
View Article and Find Full Text PDFDihydroartemisinin-piperaquine is the current frontline artemisinin combination therapy (ACT) for Plasmodium falciparum malaria in Cambodia but is now failing in several western provinces. To investigate artesunate plus mefloquine (AS+MQ) as a replacement ACT, we measured the prevalence of multiple pfmdr1 copies--a molecular marker for MQ resistance--in 844 P. falciparum clinical isolates collected in 2008 to 2013.
View Article and Find Full Text PDFWe report a large multicenter genome-wide association study of Plasmodium falciparum resistance to artemisinin, the frontline antimalarial drug. Across 15 locations in Southeast Asia, we identified at least 20 mutations in kelch13 (PF3D7_1343700) affecting the encoded propeller and BTB/POZ domains, which were associated with a slow parasite clearance rate after treatment with artemisinin derivatives. Nonsynonymous polymorphisms in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2) and crt (chloroquine resistance transporter) also showed strong associations with artemisinin resistance.
View Article and Find Full Text PDFBackground: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies.
Methods: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa).
Chloroquine (CQ) is used to treat Plasmodium vivax malaria in areas where CQ resistance has not been reported. The use of artemisinin (ART)-based combination therapies (ACTs) to treat CQ-sensitive P. vivax infections is effective and convenient but may promote the emergence and worsening of ART resistance in sympatric Plasmodium falciparum populations.
View Article and Find Full Text PDFPlasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo.
View Article and Find Full Text PDFBackground: Artemisinin resistance in Plasmodium falciparum lengthens parasite clearance half-life during artemisinin monotherapy or artemisinin-based combination therapy. Absence of in-vitro and ex-vivo correlates of artemisinin resistance hinders study of this phenotype. We aimed to assess whether an in-vitro ring-stage survival assay (RSA) can identify culture-adapted P falciparum isolates from patients with slow-clearing or fast-clearing infections, to investigate the stage-dependent susceptibility of parasites to dihydroartemisinin in the in-vitro RSA, and to assess whether an ex-vivo RSA can identify artemisinin-resistant P falciparum infections.
View Article and Find Full Text PDFIn 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance.
View Article and Find Full Text PDFWe describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation.
View Article and Find Full Text PDFBackground: Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation.
View Article and Find Full Text PDF