Publications by authors named "Sokrates Pantelides"

Article Synopsis
  • Researchers have developed a method to directly pattern oriented molybdenum telluride (MoTe) nanowires (NWs) for use in connecting two-dimensional (2D) devices, overcoming prior limitations of only achieving isotropic growth.
  • * The study involved high-resolution imaging and in-situ electrical biasing to analyze how these NWs convert from MoTe in specific directions due to localized heating effects.
  • * This technique also resulted in improved electrical performance with low Schottky barriers and contact resistance, showcasing its potential for flexible nanoelectronics.
View Article and Find Full Text PDF

In heterostructures made from polar materials, e.g., AlN-GaN-AlN, the nonequivalence of the two interfaces is long recognized as a critical aspect of their electronic properties; in that, they host different 2D carrier gases.

View Article and Find Full Text PDF

Moiré superlattices, consisting of rotationally aligned 2D atomically thin layers, provide a highly novel platform for the study of correlated quantum phenomena. However, reliable and efficient construction of moiré superlattices is challenging because of difficulties to accurately angle-align small exfoliated 2D layers and the need to shun wet-transfer processes. Here, efficient and precise construction of various moiré superlattices is demonstrated by picking up and stacking large-area 2D mono- or few-layer crystals with predetermined crystal axes, made possible by a gold-template-assisted mechanical exfoliation method.

View Article and Find Full Text PDF

The explosive growth of massive-data storage and the demand for ultrafast data processing require innovative memory devices with exceptional performance. 2D materials and their van der Waal heterostructures with atomically sharp interfaces hold great promise for innovations in memory devices. Here, this work presents non-volatile, floating-gate memory devices with all functional layers made of 2D materials, achieving ultrafast programming/erasing speeds (20 ns), high extinction ratios (up to 10), and multi-bit storage capability.

View Article and Find Full Text PDF

The advent of monochromated electron energy-loss spectroscopy has enabled atomic-resolution vibrational spectroscopy, which triggered interest in spatially localized or quasi-localized vibrational modes in materials. Here we report the discovery of phonon vortices at heavy impurities in two-dimensional materials. We use density-functional-theory calculations for two configurations of Si impurities in graphene, Si-C and Si-C, to examine atom-projected phonon densities of states and display the atomic-displacement patterns for select modes that are dominated by impurity displacements.

View Article and Find Full Text PDF

The development of electrically ultrafast-programmable semiconductor homojunctions can lead to transformative multifunctional electronic devices. However, silicon-based homojunctions are not programmable so that alternative materials need to be explored. Here 2D, multi-functional, lateral homojunctions made of van der Waals heterostructures with a semi-floating-gate configuration on a p Si substrate feature atomically sharp interfaces and can be electrostatically programmed in nanoseconds, more than seven orders of magnitude faster than other 2D-based homojunctions.

View Article and Find Full Text PDF

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level.

View Article and Find Full Text PDF

An atomic-scale ripple structure has been revealed by electron tomography based on sequential projected atomic-resolution images, but it requires harsh imaging conditions with negligible structure evolution of the imaged samples. Here, we demonstrate that the ripple structure in monolayer MoSe can be facilely reconstructed from a single-frame scanning transmission electron microscopy (STEM) image collected at designated collection angles. The intensity and shape of each Se atomic column in the single-frame projected STEM image are synergistically combined to precisely map the slight misalignments of two Se atoms induced by rippling, which is then converted to three-dimensional (3D) ripple distortions.

View Article and Find Full Text PDF

Grain boundaries (GBs) are a prolific microstructural feature that dominates the functionality of a wide class of materials. The functionality at a GB results from the unique atomic arrangements, different from those in the grain, that have driven extensive experimental and theoretical studies correlating atomic-scale GB structures to macroscopic electronic, infrared optical, and thermal properties. In this work, a SrTiO GB is examined using atomic-resolution aberration-corrected scanning transmission electron microscopy and ultrahigh-energy-resolution monochromated electron energy-loss spectroscopy, in conjunction with density functional theory.

View Article and Find Full Text PDF

Crystal-phase engineering to create metastable polymorphs is an effective and powerful way to modulate the physicochemical properties and functions of semiconductor materials, but it has been rarely explored in thermoelectrics due to concerns over thermal stability. Herein, we develop a combined colloidal synthesis and sintering route to prepare nanostructured solids through ligand retention. Nano-scale control over the unconventional cubic-phase is realized in a high-entropy Cu Ag (In Sn )SeS ( = 0-0.

View Article and Find Full Text PDF

Van der Waals layered ferroelectrics, such as CuInPS (CIPS), offer a versatile platform for miniaturization of ferroelectric device technologies. Control of the targeted composition and kinetics of CIPS synthesis enables the formation of stable self-assembled heterostructures of ferroelectric CIPS and nonferroelectric InPS (IPS). Here, we use quantitative scanning probe microscopy methods combined with density functional theory (DFT) to explore in detail the nanoscale variability in dynamic functional properties of the CIPS-IPS heterostructure.

View Article and Find Full Text PDF

The structure of amorphous materials has been debated since the 1930s as a binary question: amorphous materials are either Zachariasen continuous random networks (Z-CRNs) or Z-CRNs containing crystallites. It was recently demonstrated, however, that amorphous diamond can be synthesized in either form. Here we address the question of the structure of single-atom-thick amorphous monolayers.

View Article and Find Full Text PDF

A recently discovered, enhanced Ge diffusion mechanism along the oxidizing interface of Si/SiGe nanostructures has enabled the formation of single-crystal Si nanowires and quantum dots embedded in a defect-free, single-crystal SiGe matrix. Here, we report oxidation studies of Si/SiGe nanofins aimed at gaining a better understanding of this novel diffusion mechanism. A superlattice of alternating Si/SiGe layers was grown and patterned into fins.

View Article and Find Full Text PDF

Monolayer transition-metal dichalcogenides, e.g., MoS , typically have high intrinsic strength and Young's modulus, but low fracture toughness.

View Article and Find Full Text PDF

Spin spirals (SS) are a special case of noncollinear magnetism, where the magnetic-moment direction rotates along an axis. They have generated interest for novel phenomena, spintronics applications, and their potential formation in monolayers, but the search for monolayers exhibiting SS has not been particularly fruitful. Here, we employ density functional theory calculations to demonstrate that SS form in a recently synthesized monolayer, FeOCl.

View Article and Find Full Text PDF

Antiferroelectric (AFE) materials, in which alternating dipole moments cancel out to a zero net macroscopic polarization, can be used for high-density energy storage and memory applications. The AFE phase can exist in bulk CuInPSe, CuBiPS, and a few other transition-metal thiophosphates below 200 K. The required low temperature poses challenges for practical applications.

View Article and Find Full Text PDF

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity, are measured using macroscopic techniques that lack spatial resolution.

View Article and Find Full Text PDF

The van der Waals layered material CuInPS features interesting functional behavior, including the existence of four uniaxial polarization states, polarization reversal against the electric field through Cu ion migration, a negative-capacitance regime, and reversible extraction of Cu ions. At the heart of these characteristics lies the high mobility of Cu ions, which also determines the spontaneous polarization. Therefore, Cu migration across the lattice results in unusual ferroelectric behavior.

View Article and Find Full Text PDF

Point defects in 1T″ anisotropic ReSe offer many possibilities for defect engineering, which could endow this two-dimensional semiconductor with new functionalities, but have so far received limited attention. Here, we systematically investigate a full spectrum of point defects in ReSe, including vacancies (V), isoelectronic substitutions (O and S), and antisite defects (Se and Re), by atomic-scale electron microscopy imaging and density functional theory (DFT) calculations. Statistical counting reveals a diverse density of various point defects, which are further elaborated by the formation energy calculations.

View Article and Find Full Text PDF

Since the advent of graphene ushered the era of 2D materials, many forms of hydrogenated graphene have been reported, exhibiting diverse properties ranging from a tunable bandgap to ferromagnetic ordering. Patterned hydrogenated graphene with micron-scale patterns has been fabricated by lithographic means. Here, successful millimeter-scale synthesis of an intrinsically honeycomb-patterned form of hydrogenated graphene on Ru(0001) by epitaxial growth followed by hydrogenation is reported.

View Article and Find Full Text PDF

The development of high-performance memory devices has played a key role in the innovation of modern electronics. Non-volatile memory devices have manifested high capacity and mechanical reliability as a mainstream technology; however, their performance has been hampered by low extinction ratio and slow operational speed. Despite substantial efforts to improve these characteristics, typical write times of hundreds of micro- or milliseconds remain a few orders of magnitude longer than that of their volatile counterparts.

View Article and Find Full Text PDF

Electrides are an unusual family of materials that feature loosely bonded electrons that occupy special interstitial sites and serve as anions. They are attracting increasing attention because of their wide range of exotic physical and chemical properties. Despite the critical role of the anionic electrons in inducing these properties, their presence has not been directly observed experimentally.

View Article and Find Full Text PDF

Graphene on SiO enables fabrication of Si-technology-compatible devices, but a transfer of these devices from other substrates and direct growth have severe limitations due to a relatively small grain size or device-contamination. Here, we show an efficient, transfer-free way to integrate centimeter-scale, single-crystal graphene, of a quality suitable for electronic devices, on an insulating SiO film. Starting with single-crystal graphene grown epitaxially on Ru(0001), a SiO film is grown under the graphene by stepwise intercalation of silicon and oxygen.

View Article and Find Full Text PDF

Indium selenide (InSe) has a high electron mobility and tunable direct band gap, enabling its potential applications to electronic and optoelectronic devices. Here, we report the fabrication of InSe photodetectors with high on/off ratios and ultrahigh photoresponsivity, using ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as the top-gate dielectric. Benefiting from the successful suppression of the dark current down to ∼10A in the InSe channel by tuning the three different polarization states in ferroelectric P(VDF-TrFE) and improved interface properties using h-BN as a substrate, the ferroelectric-gated InSe photodetectors show a high on/off ratio of over 10, a high photoresponsivity up to 14 250 AW, a high detectivity up to 1.

View Article and Find Full Text PDF

CuInPS (CIPS) is a van der Waals material that has attracted attention because of its unusual properties. Recently, a combination of density functional theory (DFT) calculations and piezoresponse force microscopy (PFM) showed that CIPS is a uniaxial quadruple-well ferrielectric featuring two polar phases and a total of four polarization states that can be controlled by external strain. Here, we combine DFT and PFM to investigate the stress-dependent piezoelectric properties of CIPS, which have so far remained unexplored.

View Article and Find Full Text PDF