Publications by authors named "Sokolow S"

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF

Matrix vesicles (MVs) provide the initial site for amorphous hydroxyapatite (HA) formation within mineralizing osteoblasts. Although Na/Ca exchanger isoform-3 (NCX3, SLC8A3) was presumed to function as major Ca transporter responsible for Ca extrusion out of osteoblast into the calcifying bone matrix, its presence and functional role in MVs have not been investigated. In this study, we investigated the involvement of NCX3 in MV-mediated mineralization process and its impact on bone formation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how temperature affects schistosomiasis, a disease caused by schistosome parasites and their host snails, particularly in sub-Saharan Africa where the disease is common.
  • Previous models underestimated the effective temperature range for schistosomiasis transmission, prompting this research to analyze how temperature influences the parasites and snails involved.
  • The findings indicate that optimal transmission temperatures are higher than previously thought, suggesting that climate change may increase schistosomiasis risk in regions currently suitable for the disease.
View Article and Find Full Text PDF

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by parasites. are obligate parasites of freshwater snails, so controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF

The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis-a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar.

View Article and Find Full Text PDF
Article Synopsis
  • Many low- and middle-income communities face interconnected challenges related to infectious diseases, food insecurity, and water access, which lack effective solutions.
  • A study in West Africa shows that agricultural development can inadvertently increase schistosomiasis by promoting the growth of invasive aquatic vegetation that hosts disease-carrying snails; however, removing this vegetation led to lower infection rates in schoolchildren and no long-term negative impact on water quality.
  • The removal process not only provided a cost-effective alternative for livestock feed but also helped return nutrients to agriculture while offering substantial public health benefits, creating a promising model for addressing poverty, disease, and environmental sustainability simultaneously.
View Article and Find Full Text PDF

While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data.

View Article and Find Full Text PDF

Optimal control theory can be a useful tool to identify the best strategies for the management of infectious diseases. In most of the applications to disease control with ordinary differential equations, the objective functional to be optimized is formulated in monetary terms as the sum of intervention costs and the cost associated with the burden of disease. We present alternate formulations that express epidemiological outcomes via health metrics and reframe the problem to include features such as budget constraints and epidemiological targets.

View Article and Find Full Text PDF

Use of agrochemicals, including insecticides, is vital to food production and predicted to increase 2-5 fold by 2050. Previous studies have shown a positive association between agriculture and the human infectious disease schistosomiasis, which is problematic as this parasitic disease infects approximately 250 million people worldwide. Certain insecticides might runoff fields and be highly toxic to invertebrates, such as prawns in the genus Macrobrachium, that are biocontrol agents for snails that transmit the parasites causing schistosomiasis.

View Article and Find Full Text PDF

Background: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone.

Methods: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses progress made by sustainable development practitioners in reducing human infectious diseases while promoting conservation through a systematic literature review of 46 proposed solutions.
  • Some solutions showed medium to high-quality evidence of success, but there were significant evidence gaps indicating a need for further research.
  • Stakeholders are encouraged to use the Review and an online database to discover, customize, or innovate new win-win interventions.
View Article and Find Full Text PDF

Humans live in complex socio-ecological systems where we interact with parasites and pathogens that spend time in abiotic and biotic environmental reservoirs (e.g., water, air, soil, other vertebrate hosts, vectors, intermediate hosts).

View Article and Find Full Text PDF

Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3).

View Article and Find Full Text PDF

A debate has emerged over the potential socio-ecological drivers of wildlife-origin zoonotic disease outbreaks and emerging infectious disease (EID) events. This Review explores the extent to which the incidence of wildlife-origin infectious disease outbreaks, which are likely to include devastating pandemics like HIV/AIDS and COVID-19, may be linked to excessive and increasing rates of tropical deforestation for agricultural food production and wild meat hunting and trade, which are further related to contemporary ecological crises such as global warming and mass species extinction. Here we explore a set of precautionary responses to wildlife-origin zoonosis threat, including: (a) limiting human encroachment into tropical wildlands by promoting a global transition to diets low in livestock source foods; (b) containing tropical wild meat hunting and trade by curbing urban wild meat demand, while securing access for indigenous people and local communities in remote subsistence areas; and (c) improving biosecurity and other strategies to break zoonosis transmission pathways at the wildlife-human interface and along animal source food supply chains.

View Article and Find Full Text PDF

1. Many infectious pathogens spend a significant portion of their life cycles in the environment or in animal hosts, where ecological interactions with natural enemies may influence pathogen transmission to people. Yet, our understanding of natural enemy opportunities for human disease control is lacking, despite widespread uptake and success of natural enemy solutions for pest and parasite management in agriculture.

View Article and Find Full Text PDF

Antibiotic-resistant and antibiotic-associated pathogens are commonly encountered by surgeons. Pathogens such as methicillin-resistant (MRSA), infection (CDI), and carbapenem-resistant (CRE) result in considerable human morbidity, mortality, and excess healthcare expenditure. Human colonization or infection can result from exposure to these pathogens across a range of domains both inside and outside of the built healthcare environment, exposure that may be influenced by socioeconomic and environmental determinants of health, the importance of which has not been investigated fully.

View Article and Find Full Text PDF

There is increasing understanding, globally, that climate change and increased pollution will have a profound and mostly harmful effect on human health. This review brings together international experts to describe both the direct (such as heat waves) and indirect (such as vector-borne disease incidence) health impacts of climate change. These impacts vary depending on vulnerability (i.

View Article and Find Full Text PDF

Introduction: Analyses of off-label use of acetylcholinesterase inhibitors (AChEIs) in mild cognitive impairment (MCI) has produced mixed results. Post hoc analyses of observational cohorts, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), have reported deleterious effects in AChEI-treated subjects (AChEI+). Here, we used neuroimaging biomarkers to determine whether AChEI+ subjects had a greater rate of neurodegeneration than untreated (AChEI-) subjects while accounting for baseline differences.

View Article and Find Full Text PDF

Human-mediated changes to natural ecosystems have consequences for both ecosystem and human health. Historically, efforts to preserve or restore 'biodiversity' can seem to be in opposition to human interests. However, the integration of biodiversity conservation and public health has gained significant traction in recent years, and new efforts to identify solutions that benefit both environmental and human health are ongoing.

View Article and Find Full Text PDF

Background: Infectious disease risk is driven by three interrelated components: exposure, hazard, and vulnerability. For schistosomiasis, exposure occurs through contact with water, which is often tied to daily activities. Water contact, however, does not imply risk unless the environmental hazard of snails and parasites is also present in the water.

View Article and Find Full Text PDF
Article Synopsis
  • Schistosome parasites, affecting over 200 million people mainly in sub-Saharan Africa, show varied infection risks based on the distribution of their intermediate host snails.
  • The study examines schistosomiasis risk in 16 villages along the Senegal River, focusing on the spatial distribution of snails and their relationship to human infections of two species, S. haematobium and S. mansoni.
  • Results indicate that S. haematobium infection risk increases with snail habitat up to 120 meters from shore and larger water access sites, while S. mansoni risk relates to smaller, sheltered sites without a positive correlation to snail habitat.
View Article and Find Full Text PDF
Article Synopsis
  • Computer vision, specifically convolutional neural networks (CNNs), is explored for classifying environmental stages of parasites and their snail hosts in public health, focusing on schistosomiasis as a case study.
  • The study trained a CNN on a dataset of over 10,600 images from the Senegal River Basin, achieving high accuracy (99% for snails and 91% for cercariae) comparable to expert guidelines.
  • Results indicate that such machine learning models could assist in identifying disease vectors in remote areas, enhancing public health efforts by providing a practical tool for classification using smartphones.
View Article and Find Full Text PDF