New voltammetric and flow amperometric methods for the determination of guaifenesin (GFE) using a perspective screen-printed sensor (SPE) with boron-doped diamond electrode (BDDE) were developed. The electrochemical oxidation of GFE was studied on the surface of the oxygen-terminated BDDE of the sensor. The GFE provided two irreversible anodic signals at a potential of 1.
View Article and Find Full Text PDFThe extent to which electrophores covalently bridged by a saturated linker are electrochemically independent was investigated considering the charge/spin duality of the electron and functionality of the electrophore as a spin carrier upon reduction. By combining computational modeling with electrochemical experiments, we investigated the mechanism by which tethered electrophores react together within 4,4'-oligo[n]methylene-bipyridinium assemblies (with n=2 to 5). We show that native dicationic electrophores (redox state Z=+2) are folded prior to electron injection into the system, allowing the emergence of supra-molecular orbitals (supra-MOs) likely to support the process of the reductive σ bond formation giving cyclomers.
View Article and Find Full Text PDFThis study aimed to demonstrate the behavior of different complexes using IR spectroelectrochemistry (SEC), a technique that combines IR spectroscopy with electrochemistry. Four different Mn and Re catalysts for electrochemical CO reduction were studied in dry acetonitrile. In the case of Mn(apbpy)(CO)Br (apbpy = 4(4-aminophenyl)-2,2'-bipyridine), SEC suggested that a very slow catalytic reduction of CO also occurs in acetonitrile in the absence of proton donors, but at rather negative potentials.
View Article and Find Full Text PDFTwo catecholase-like biomimetic catalysts, namely, two dinuclear copper complexes [Cu(L1)(OH)(HO)(EtOH)][ClO] (C1) and [CuAcO(L1)ClO] (C2) with the 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with the mononuclear complex Cu(ClO)(L2) (C3) containing ligand 1,2-(CHN-6-OCH-2-CHN)CHCH (L2), were synthesized. Their catalytic pathways were investigated and compared. The evaluation of the catalytic activity of compound C1 (and C2, C3) using the Michaelis-Menten model was represented by values of = 272.
View Article and Find Full Text PDFThe biological electron transfer reactions play an important role in the bioactivity of drugs; thus, the knowledge of their electrochemical behavior is crucial. The formation of radicals during oxidation or reduction, the presence of short-living intermediates, the determination of reaction mechanisms involving electron and proton transfers, all contribute to the comprehension of drug activities and the determination of their mode of action and their metabolites. In addition, if a drug is encapsulated in the cyclodextrin cavity, its electrochemical properties can change compared to a free drug molecule.
View Article and Find Full Text PDFNatural antioxidants, like phenolic acids, possess a unique chemical space that can protect cellular components from oxidative stress. However, their polar carboxylic acid chemotype reduces full intracellular antioxidant potential due to limited diffusion through biological membranes. Here, we have designed and developed a new generation of hydrophobic turn-on fluorescent antioxidant precursors that upon penetration of the cell membrane, reveal a more polar and more potent antioxidant core and simultaneously become fluorescent allowing their intracellular tracking.
View Article and Find Full Text PDFMolecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, , and its -bridged cyclophane-like analogue, .
View Article and Find Full Text PDFNew approaches to the synthesis of 4,7-dichloro-1,10-phenanthrolines and their corresponding 9-carbazol-9-yl-, 10-phenothiazin-10-yl- and pyrrolidin-1-yl derivatives were developed. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, electronic absorption spectroscopy and multinuclear NMR in both solution and solid state including N CP/MAS NMR. The structures of 5-fluoro-2,9-dimethyl-4,7-di(pyrrolidin-1-yl)-1,10-phenanthroline (5d), 4,7-di(9H-carbazol-9-yl)-9-oxo-9,10-dihydro-1,10-phenanthroline-5-carbonitrile (6a) and 4,7-di(10H-phenothiazin-10-yl)-1,10-phenanthroline-5-carbonitrile () were determined by single-crystal X-ray diffraction measurements.
View Article and Find Full Text PDFQuercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2018
Background: Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD).
View Article and Find Full Text PDFPediatr Allergy Immunol
December 2017
Background: Changes in lifestyle and obesity in recent decades have brought about a dramatic increase in type 2 diabetes mellitus (DM2) and allergic diseases. Clinical and epidemiological studies associate obesity with epidemics of allergic diseases. The link between obesity and DM2 with immunological components of IgE-mediated allergic inflammation is not yet conclusively established.
View Article and Find Full Text PDFA 73-year-old male patient was admitted with symptoms of decompensated cardiac and pulmonary insufficiency with long-lasting history. A tumor-like formation was observed within the clinical examination, covering the whole skin of the nose, paranasal region of the left part of the face, as well as the upper and lower left eyelids. The lesion was with yellow to brownish surface and dark-reddish to violet discolored peripheral area, composed of nodular formations, smooth central surface and firm texture on palpation.
View Article and Find Full Text PDFThe electrochemical oxidation of the natural antioxidant 2,3-dehydrosilybin (DHS) was investigated in acetonitrile. The spectral changes during two electron and two proton oxidation registered by in situ IR spectroelectrochemistry show that the electron transfer is followed by a subsequent chemical reaction with traces of water. A benzofuranone derivative (BF) is formed by ECEC (electron transfer-chemical reaction-electron transfer-chemical reaction) process at the potential of the first oxidation wave.
View Article and Find Full Text PDFThe protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated.
View Article and Find Full Text PDFThe oxidation mechanism of selected hydroxyquinoline carboxylic acids such as 8-hydroxyquinoline-7-carboxylic acid (1), the two positional isomers 2-methyl-8-hydroxyquinoline-7-carboxylic acid (3) and 2-methyl-5-hydroxyquinoline-6-carboxylic acid (4), as well as other hydroxyquinolines were studied in aprotic environment using cyclic voltammetry, controlled potential electrolysis, in situ UV-vis and IR spectroelectrochemistry, and HPLC-MS/MS techniques. IR spectroelectrochemistry showed that oxidation unexpectedly proceeds together with protonation of the starting compound. We proved that the nitrogen atom in the heterocycle of hydroxyquinolines is protonated during the apparent 0.
View Article and Find Full Text PDFChem Commun (Camb)
October 2014
The forces required for the detachment of ferrocene (Fc) from β-cyclodextrin (βCD) in a single host (βCD)-guest (Fc) complex were investigated using force spectroscopy under electrochemical conditions. The redox state of the guest Fc moiety as well as the structure of the supporting matrix was found to decisively affect the nanomechanical properties of the complex.
View Article and Find Full Text PDFAs a part of our objective to build an immunosensor for the detection of the pesticide atrazine (ATZ) in environmental samples, we studied the self-assembling process of the disulfide derivative of the pesticide atrazine on a gold substrate. Atrazine-based self-assembled monolayers were characterized by ellipsometry, scanning tunneling microscopy, polarization-modulation infrared reflection-absorption spectroscopy (PM IRRAS), X-ray photoelectron spectroscopy and quartz crystal microbalance (QCM) measurements. Two different time constants for the adsorption process were observed, depending on the experimental method used.
View Article and Find Full Text PDFThe retrospective analysis (2006-2010 yy) of treatment of 895 patients with gastroduodenal ulcer bleeding was conducted. Lethal outcome was registered in 220 (24.6%) patients, of them directly of the ulcer bleeding died 45 (5%).
View Article and Find Full Text PDFSingle-molecule conductance in a series of extended viologen molecules was measured at room temperature using a gold-molecule-gold scanning tunneling microscopy break junction arrangement. Conductance values for individual molecules change from 4.8 ± 1.
View Article and Find Full Text PDFThis study explains the controversies in the literature concerning the number of electrons involved in the oxidation of quercetin. This stems from inappropriate handling samples, which require strict anaerobic conditions. The redox potential of quercetin strongly depends on the pH and on the presence of dissociation forms in solution.
View Article and Find Full Text PDFThe natural flavonoid compounds quercetin (3,3',4',5,7-pentahydroxyflavone) and luteolin (3',4',5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV-visible spectrophotometry, both in aqueous and ethanolic solutions.
View Article and Find Full Text PDFThe environmental pollutant 7H-dibenzo[c,g]carbazole (DBC) and its derivative, 5,9-dimethylDBC (DiMeDBC), produced significant and dose-dependent levels of micronuclei followed by a substantial increase in the frequency of apoptotic cells in the V79MZh3A4 cell line stably expressing the human cytochrome P450 (hCYP) 3A4. In contrast, neither micronuclei nor apoptosis were found in cells exposed to the sarcomagenic carcinogen, N-methylDBC (N-MeDBC). A slight but significant level of gene mutations and DNA adducts detected in V79MZh3A4 cells treated with N-MeDBC, only at the highest concentration (30μM), revealed that this sarcomagenic carcinogen was also metabolized by hCYP3A4.
View Article and Find Full Text PDFFucoidans were isolated by water extraction and ion-exchange chromatography from brown algae Eclonia cava, Sargassum hornery, and Costaria costata collected near of Korean coasts. The structures of fucoidans were investigated. Fucoidan from E.
View Article and Find Full Text PDF