There is little information on the layer-specific failure properties of the adult human abdominal aorta, and there has been no quantification of postfailure damage. Infra-renal aortas were thus taken from forty-seven autopsy subjects and cut into 870 intact-wall and layer strips that underwent uni-axial-tensile testing. Intact-wall failure stress did not differ significantly (p > 0.
View Article and Find Full Text PDFKnowledge of the failure properties of the aorta is essential to understand the mechanisms of dissection and rupture. Limited information is, however, available in humans or experimental animals about the layer-specific properties and their segmental variations have not been determined. In this paper, the failure properties of the intima, media, and adventitia were studied in nine consecutive aortic segments and two principal directions.
View Article and Find Full Text PDFThe stress distribution in ascending thoracic aortic aneurysms is determined by the mechanical properties, geometry, loading conditions, and zero-stress state of the aneurysmal aorta. Our objective was to fully characterize the zero-stress state of the aneurysmal aorta in twelve tricuspid aortic valve patients and eight (age/aortic diameter-matched) bicuspid aortic valve patients, for which little data are available. Opening angles and residual stretches were measured for the intact wall and individual layers according to quadrant and were similar in the two patient groups.
View Article and Find Full Text PDFAortic dissection is a life-threatening event, during which a primary tear propagates along the aorta causing catastrophic delamination of the inner (intima with most of the media) from the outer layers (leftover media with adventitia). Our understanding of mode-I fracture resistance at different aortic regions is incomplete, although the anatomical localization of the dissection channel may be assigned to this factor. To determine whether the susceptibility to dissection propagation varied with aortic region, the average and standard deviation of peel tension (indices of adhesive strength between layers when pulled apart and its fluctuation) were measured in 24 cadaveric subjects.
View Article and Find Full Text PDFAortic dissection often initiates a few centimeters distal to the coronary ostia in the right lateral wall, with an intimal-medial tear that tends to be transversely directed and occupy half of the aortic circumference, sometimes less, but seldom the entire circumference. To elucidate these clinical observations, tear tests were presently used to determine the layer-specific resistance to tear propagation in ascending thoracic aortic aneurysms, assessing variations over the four circumferential quadrants and two directions. Aneurysmal tissue strips of standardized dimensions from sixteen patients were anatomically separated into layers (seven hundred and twelve) and an incision made along one-third of their length.
View Article and Find Full Text PDFBackground: The development of functional bioengineered small-diameter vascular grafts (SDVGs), represents a major challenge of tissue engineering. This study aimed to evaluate the repopulation efficacy of biological vessels, utilizing the cord blood platelet lysate (CBPL).
Methods: Human umbilical arteries (hUAs, = 10) were submitted to decellularization.
Interact Cardiovasc Thorac Surg
November 2021
Objectives: Ascending thoracic aortic aneurysms (ATAAs) often coexist with dysfunctional tricuspid aortic valves (TAVs). How valvular pathology relates to the aortic wall mechanical properties requires detailed examination.
Methods: Intact-wall and layer-specific mechanical properties from 40 and 21 patients with TAV-ATAAs, respectively, were studied using uniaxial tensile testing, longitudinally and circumferentially.
This study described the regional distribution of layer-specific residual deformations in fifteen human aortas collected during autopsy. Circumferentially and axially cut strips of standardized dimensions from the anterior quadrant of nine consecutive aortic levels were photographed to obtain the zero-stress state for the intact wall. The strips were then dissected into layers that were also photographed to obtain their zero-stress state.
View Article and Find Full Text PDFBioengineering (Basel)
February 2021
Multiaxial testing of the small intestinal wall is critical for understanding its biomechanical properties and defining material models, but limited data and material models are available. The aim of the present study was to develop a microstructure-based material model for the small intestine and test whether there was a significant variation in the passive biomechanical properties along the length of the organ. Rat tissue was cut into eight segments that underwent inflation/extension testing, and their nonlinearly hyper-elastic and anisotropic response was characterized by a fiber-reinforced model.
View Article and Find Full Text PDFDetailed estimation of axial residual strains in the human aorta is necessary when performing biomechanical analyses of physiologic functions and pathologic conditions. We recently published such data for autopsied aortas and the present aim was to measure axial residual stretches at different wall depths, along with layer thicknesses on images borrowed from that work. Residual stretches at the external surface and medial-adventitial interface increased along the aorta's ascending course, decreased along its descending course, and increased from the diaphragm toward the iliac arteries.
View Article and Find Full Text PDFThe human ureters have not been thoroughly explored from the biomechanics perspective, despite the wealth of such data for other soft-tissue types. This study was motivated by the need to use relevant biomechanical data from human ureters and microstructure-based material formulations for simulations of ureteral peristalsis and stenting. Our starting choice was the four-fiber family model that has proven its validity as a descriptor of the multiaxial response of cardiovascular tissues.
View Article and Find Full Text PDFThe gold standard vascular substitutes, used in cardiovascular surgery, are the Dacron or expanded polytetrafluoroethylene (ePTFE)-derived grafts. However, major adverse reactions accompany their use. For this purpose, decellularized human umbilical arteries (hUAs) may be proven as a significant source for the development of small diameter conduits.
View Article and Find Full Text PDFAsian Cardiovasc Thorac Ann
September 2021
Bicuspid aortic valve is the most common congenital cardiovascular defect, often associated with proximal aortic dilatation, and the ideal management strategy is debated. The inconsistency in previous and present guideline recommendations emphasizes the insufficiency of the maximal diameter as the sole criterion for prophylactic repair. Our ability to guide clinical decisions may improve through an understanding of the mechanical properties of ascending thoracic aortic aneurysms in bicuspid compared to tricuspid aortic valve patients and non-aneurysmal aortas, because dissection and rupture are aortic wall mechanical failures.
View Article and Find Full Text PDFInformation on the layer-specific residual deformations of aortic tissue and how these vary throughout the vessel is important for understanding the regionally-varying aortic functions and pathophysiology, but not so much can be found in the literature. Toward this end, porcine aortas were sectioned into eighteen rings, with one ring from each anatomical position radially cut to obtain the zero-stress state for the intact wall and the other ring dissected into intimal-medial and adventitial layers; these rings were then radially cut to reach the zero-stress state for the intima-media and adventitia. Peripheral variations in internal/external circumferences, thickness, and opening angle of the intact wall and its layers were measured through image analysis at the no-load and zero-stress states.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2019
Our understanding of aortic biomechanics is customarily limited by lack of information on the axial residual stretches of the vessel in both humans and experimental animals that would facilitate the identification of its actual zero-stress state. The aim of this study was thus to acquire hitherto unreported quantitative knowledge of axial opening angle and residual stretches in different segments and quadrants of the human aorta according to age and gender. Twenty-three aortas were harvested during autopsy from the aortic root to the iliac bifurcation and were divided into ≥12 segments and 4 quadrants.
View Article and Find Full Text PDFKnowledge of the capacity of the ureteral wall to withstand urodynamic or external stresses is essential to understand ureteral injury and rupture that mostly occur following trauma, but may also be secondary to obstructive uropathy. It has clinical significance as well in the prevention of iatrogenic injury, for example, during ureteroscopy, but no information is available with regard to the age-related failure properties and regional differences have not been systematically described. Uniaxial tensile testing was performed on 166 ureteral rings and strips from 21 humans free of overt urologic disease; histological evaluation was performed.
View Article and Find Full Text PDFThoracic aortic dissections involving the ascending aorta represent one of the most dramatic and lethal emergencies in cardiovascular surgery. It is therefore critical to identify the mechanisms driving them and biomechanical analyses hold great clinical promise, since rupture/dissection occur when aortic wall strength is unable to withstand hemodynamic stresses. Although several studies have been done on the biomechanical properties of thoracic aortic aneurysms, few data are available about thoracic aortic dissections.
View Article and Find Full Text PDFBackground: Previous studies have not examined the participation of intimal, medial, and adventitial layers in providing mechanical strength to the ascending thoracic aortic aneurysm (ATAA) wall compared with the nonaneurysmal aorta. In this study we compared the mechanical properties of intact wall and its layers among ATAAs and nonaneurysmal aortas, with explicit consideration of the effects of valve morphology; that is, bicuspid aortic valve (BAV) versus tricuspid aortic valve (TAV), and aortic quadrant.
Methods: Whole ATAAs were taken from patients undergoing elective repair and nonaneurysmal aortas from age-matched autopsy subjects.
The ureters are retroperitoneal structures controlling urine transport from the kidneys to the bladder. Because of the relative scarcity of data on the biomechanical properties of human ureter and the established importance of knowing these properties for understanding its physiology, we initiated biomechanical studies in cadaveric tissue. Herein, we report definite zero-stress/no-load geometrical characterization at 15 regions along the ureter of human cadavers aged 23-82 years, estimating the opening angle, circumferential residual strains, axial curvature, and dimensional parameters.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2017
This article reports regional differences in the inflation/extension properties and the no-load and zero-stress geometry, serving as the reference state for defining the multiaxial response, within and across the individual duodenum, jejunum, and ileum of the small intestine of middle-aged rats in the normal condition. The descriptive/predictive capacity of three phenomenological models, regularly appearing in the biomechanics literature, to characterize the anisotropic response of intestinal tissue was investigated in terms of best-fit parameters. Our inflation/extension results showed that the pressure-radius relationship was nonlinear, dissimilar to the near-constant, linear force-pressure relationship at all axial stretches, suggesting an energetically-favorable response in the entire loading range.
View Article and Find Full Text PDFBackground: Arterial function is regulated by estrogen, but no consistent pattern of arterial mechanical remodeling in response to depleted estrogen levels is available.
Objective: To examine long-term effects of ovariectomy (OVX) on the mechanical properties, morphology, and histological structure of the carotid artery in middle-aged rats and a potentially protective effect of Sideritis euboea extract (SID), commonly consumed as "mountain tea".
Methods: 10-month-old female Wistar rats were allocated into control (sham-operated), OVX, OVX+SID, and OVX+MALT (maltodextrin; excipient used for dilution of SID) groups.
The biomechanical response of the human aorta varies with axial location, but little is known about the respective variation of residual strains. Such data are available for common lab animals, but in the traditional opening angle measurement the aorta is considered as an ideal cylinder and average residual strains are measured, so that the spatial variations of local residual strains are not determined. The present study provides opening angle and residual strain data throughout the course and around the circumference of the aorta harvested during autopsy.
View Article and Find Full Text PDFThe ureter has been largely overlooked heretofore in the study of the biomechanics of soft biological tissues, although there has been significant motivation to use its biomechanical properties as inputs to mathematical models of ureteral function. Herein, we used histological analysis for quantification of collagen contents and thickness/area of ureteral layers, with concomitant geometrical analysis of zero-stress and no-load states, and inflation/extension testing to biomechanically characterize with the Fung-type model the ureters from cadavers. The effects of age and gender on the regional distribution of those properties were examined.
View Article and Find Full Text PDFBackground: Limited attention has been paid to the role of beta-adrenergic blocking agents on large artery function/structure, despite being clinically useful for treating many forms of cardiovascular disease.
Objective: To assess long-term consequences of beta-blocker administration on the biomechanical properties, geometry, and histological structure of two major elastic arteries.
Methods: Healthy male rats received water with their food, while beta-blockade was produced in rats by adding propranolol in their drinking water.